【題目】近年來,我國許多省市霧霾天氣頻發(fā),為增強(qiáng)市民的環(huán)境保護(hù)意識,某市面向全市征召名義務(wù)宣傳志愿者,成立環(huán)境保護(hù)宣傳組織,現(xiàn)把該組織的成員按年齡分成組第,第,第,第,第,得到的頻率分布直方圖如圖所示,已知第組有人.

(1)求該組織的人數(shù);

(2)若在第組中用分層抽樣的方法抽取名志愿者參加某社區(qū)的宣傳活動,應(yīng)從第組各抽取多少名志愿者?

(3)在(2)的條件下,該組織決定在這名志愿者中隨機(jī)抽取名志愿者介紹宣傳經(jīng)驗(yàn),求第組至少有名志愿者被抽中的概率.

【答案】(1)(2)應(yīng)從第組中分別抽取人, 人, 人. (3)

【解析】試題分析:(1)由題意第組的人數(shù)為,即可求解該組織人數(shù).

(2)根據(jù)頻率分布直方圖,求得第組,第組,,第組的人數(shù),再根據(jù)分層抽樣的方法,即可求解再第組所抽取的人數(shù).

(3)記第組的名志愿者為,第組的名志愿者為,第組的名志愿者為,列出所有基本事件的總數(shù),得出事件所包含的基本事件的個(gè)數(shù),利用古典概型,即可求解概率.

試題解析:

(1)由題意第組的人數(shù)為,得到,故該組織有人.

(2)第組的人數(shù)為,第組的人數(shù)為,第組的人數(shù)為,所以第組共有名志愿者,所以利用分層抽樣的方法在名志愿者中抽取名志愿者,每組抽取的人數(shù)分別為:第;第;第.

所以應(yīng)從第組中分別抽取人, 人, 人.

(3)記第組的名志愿者為,第組的名志愿者為,第組的名志愿者為,則從名志愿者中抽取名志愿者有

,共有種.

其中第組的名志愿者至少有一名志愿者被抽中的有

,共有種.

則第組至少有名志愿者被抽中的概率為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù), ,若,使得直線的斜率為0,則的最小值為( )

A. B. C. D. 2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若函數(shù)y=f(x)的導(dǎo)函數(shù)為y=f′(x),且f′(x)=sin2x﹣ cos2x,則下列說法正確的是(
A.y=f(x)的周期為
B.y=f(x)在[0, ]上是減函數(shù)
C.y=f(x)的圖象關(guān)于直線x= 對稱
D.y=f(x)是偶函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定義在上的函數(shù)的圖像經(jīng)過點(diǎn),且在區(qū)間單調(diào)遞減,又知函數(shù)為偶函數(shù),則關(guān)于的不等式的解為 ( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,已知直線l的參數(shù)方程為 (t為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸,建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為:ρ2﹣3ρ﹣4=0(ρ≥0).
(1)寫出直線l的普通方程與曲線C的直角坐標(biāo)系方程;
(2)設(shè)直線l與曲線C相交于A,B兩點(diǎn),求∠AOB的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】我國古代秦九韶算法可計(jì)算多項(xiàng)式anxn+an1xn1+…+a1x+a0的值,它所反映的程序框圖如圖所示,當(dāng)x=1時(shí),當(dāng)多項(xiàng)式為x4+4x3+6x2+4x+1的值為(

A.5
B.16
C.15
D.11

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知正三角形ABC邊長為2,將它沿高AD翻折,使點(diǎn)B與點(diǎn)C間的距離為 ,此時(shí)四面體ABCD的外接球的表面積為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=lnx。

(1)求曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程;

(2)求證:當(dāng)x>0時(shí),f(x)≥l-;

(3)若x-1>alnx對任意x>1恒成立,求實(shí)數(shù)a的最大值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱錐中,,,,且,,,上一點(diǎn),.

(1)求證:平面

(2)求異面直線所成角的余弦值.

查看答案和解析>>

同步練習(xí)冊答案