(07年安徽卷理)(本小題滿分14分)
設(shè)a≥0,f (x)=x-1-ln2 x+2a ln x(x>0).
(Ⅰ)令F(x)=xf'(x),討論F(x)在(0.+∞)內(nèi)的單調(diào)性并求極值;
(Ⅱ)求證:當(dāng)x>1時(shí),恒有x>ln2x-2a ln x+1.
解析:本小題主要考查函數(shù)導(dǎo)數(shù)的概念與計(jì)算,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性、極值和證明不等式的方法,考查綜合運(yùn)用有關(guān)知識解決問題的能力.本小題滿分14分.
(Ⅰ)根據(jù)求導(dǎo)法則有,
故,
于是,
列表如下:
2 | |||
0 | |||
極小值 |
故知在內(nèi)是減函數(shù),在內(nèi)是增函數(shù),所以,在處取得極小值.
(Ⅱ)證明:由知,的極小值.
于是由上表知,對一切,恒有.
從而當(dāng)時(shí),恒有,故在內(nèi)單調(diào)增加.
所以當(dāng)時(shí),,即.
故當(dāng)時(shí),恒有.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
(07年安徽卷理)(本小題滿分12分)
如圖,曲線G的方程為y2=20(y≥0).以原點(diǎn)為圓心,以t(t >0)為半徑的圓分別與曲線G和y軸的正半軸相交于點(diǎn)A與點(diǎn)B.直線AB與x軸相交于點(diǎn)C.
(Ⅰ)求點(diǎn)A的橫坐標(biāo)a與點(diǎn)C的橫坐標(biāo)c的關(guān)系式;
(Ⅱ)設(shè)曲線G上點(diǎn)D的橫坐標(biāo)為a+2,求證:直線CD的斜率為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(07年安徽卷理)在正方體上任意選擇4個(gè)頂點(diǎn),它們可能是如下各種幾何形體的4個(gè)頂點(diǎn),這些幾何形體是 (寫出所有正確結(jié)論的編號).
①矩形;
②不是矩形的平行四邊形;
③有三個(gè)面為等腰直角三角形,有一個(gè)面為等邊三角形的四面體;
④每個(gè)面都是等邊三角形的四面體;
⑤每個(gè)面都是直角三角形的四面體.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(07年安徽卷理)如圖,拋物線y=-x2+1與x軸的正半軸交于點(diǎn)A,將線段OA的n等分點(diǎn)從左至右依次記為P1,P2,…,Pn-1,過這些分點(diǎn)分別作x軸的垂線,與拋物線的交點(diǎn)依次為Q1,Q2,…,Qn-1,從而得到n-1個(gè)直角三角形△Q1OP1, △Q2P1P2,…, △Qn-1Pn-1Pn-1,當(dāng)n→∞時(shí),這些三角形的面積之和的極限為 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com