已知雙曲線x2-=1的左頂點(diǎn)為A1,右焦點(diǎn)為F2,P為雙曲線右支上一點(diǎn),則最小值為    
【答案】分析:根據(jù)題意,設(shè)P(x,y)(x≥1),根據(jù)雙曲線的方程,易得A1、F2的坐標(biāo),將其代入中,可得關(guān)于x、y的關(guān)系式,結(jié)合雙曲線的方程,可得=4x2-x-5=4-5-,由x的范圍,可得答案.
解答:解:根據(jù)題意,設(shè)P(x,y)(x≥1),
易得A1(-1,0),F(xiàn)2(2,0),
=(-1-x,y)•(2-x,y)=x2-x-2+y2,
又x2-=1,故y2=3(x2-1),
于是=4x2-x-5=4-5-,
當(dāng)x=1時(shí),取到最小值-2;
故答案為:-2.
點(diǎn)評(píng):本題考查雙曲線方程的應(yīng)用,涉及最值問題;解題的思路是先設(shè)出變量,表示出要求的表達(dá)式,結(jié)合圓錐曲線的方程,將其轉(zhuǎn)化為只含一個(gè)變量的關(guān)系式,進(jìn)而由不等式的性質(zhì)或函數(shù)的最值進(jìn)行計(jì)算.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線x2-=1,過P(2,1)點(diǎn)作一直線交雙曲線于A、B兩點(diǎn),并使P為AB的中點(diǎn),則直線AB的斜率為____________________-.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線x2-=1的焦點(diǎn)為F1、F2,點(diǎn)M在雙曲線上,且Equation.3·Equation.3=0,則M到x軸的距離為(    )

A.               B.                C.               D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線x2-=1,過點(diǎn)P(1,1)能否作直線l,與雙曲線交于A、B兩點(diǎn),且點(diǎn)P是線段AB的中點(diǎn)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線x2-=1的焦點(diǎn)為F1、F2,點(diǎn)M在雙曲線上,且=0,則點(diǎn)M到x軸的距離為(    )

A.              B.            C.            D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線x2-=1,雙曲線存在關(guān)于直線l:y=kx+4的對(duì)稱點(diǎn),求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案