設(shè)集合A={x∈R|x≤2},B={x∈R|
12
2x<6}
,則A∩B=
(-1,2]
(-1,2]
分析:求出集合B中其他不等式的解集,確定出集合B,找出A與B的公共部分,即可求出兩集合的交集.
解答:解:由集合B中的不等式變形得:2-1<2x<2log26
解得:-1<x<log26,
∴B=(-1,log26),又A=(-∞,2],
則A∩B=(-1,2].
故答案為:(-1,2]
點(diǎn)評(píng):此題屬于以其他不等式的解法為平臺(tái),考查了交集及其運(yùn)算,熟練掌握交集的定義是解本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

4、設(shè)集合A={x∈R|x-2>0},B={x∈R|x<0},C={x∈R|x(x-2)>0},則“x∈A∪B”是“x∈C”的( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)集合A={x∈R|x2-4x=0},集合B={x∈R|x2-2(a+1)x+a2-1=0},
(1)若B=∅,求實(shí)數(shù)a的取值范圍;
(2)若B≠∅,且A∩B=B,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)集合A={x∈R|x2-3x+2=0},B={x∈R|2x2-ax+2=0},若A∩B=A,求實(shí)數(shù)a的取值集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)集合A={x∈R||2x-1|≥1},B={x∈R|
1x
-1>0
},
(1)求A與B的解集   (2)求A∩B.

查看答案和解析>>

同步練習(xí)冊(cè)答案