【題目】數(shù)列為遞增的等比數(shù)列,

數(shù)列滿足

(Ⅰ)求數(shù)列的通項公式;(Ⅱ)求證: 是等差數(shù)列;

(Ⅲ)設數(shù)列滿足,且數(shù)列的前項和,并求使得對任意都成立的正整數(shù)的最小值.

【答案】(1)(2) 是首項為1,公差為2的等差數(shù)列. (3)4

【解析】試題分析:(1)根據(jù){an}為遞增的等比數(shù)列且a32=a1a5,得到a1=1,a3=4,a5=16,進而求得an,bn的通項公式;(2)利用等差數(shù)列定義加以證明;(3)利用裂項相消法求數(shù)列的前n項和,再用分離參數(shù)法和單調性求m的最小值.

試題解析:

(1)數(shù)列為遞增的等比數(shù)列,則其公比為正數(shù),又,當且僅當時成立。此時公比 所以

(2) 因為 ,所以,即

所以是首項為,公差為2的等差數(shù)列.

(3),所以

,

,n∈N*,即數(shù)列{Tn}是遞增數(shù)列.∴當n=1時,Tn取得最小值

要使得對任意n∈N*都成立,結合(Ⅰ)的結果,只需

,故正整數(shù)m的最小值為4.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】為了解學生的身體狀況,某校隨機抽取了一批學生測量體重,經(jīng)統(tǒng)計,這批學生的體重數(shù)據(jù)(單位:千克)全部介于之間,將數(shù)據(jù)分成以下組,第一組,第二組,第三組,第四組,第五組,得到如圖所示的頻率分布直方圖,現(xiàn)采用分層抽樣的方法,從第、組中隨機抽取名學生做初檢.

)求每組抽取的學生人數(shù).

)若從名學生中再次隨機抽取名學生進行復檢,求這名學生不在同一組的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

在平面直角坐標系中,曲線的參數(shù)方程為,( 為參數(shù)),以為極點, 軸的正半軸建立極坐標系,曲線是圓心在極軸上且經(jīng)過極點的圓,射線與曲線交于點

)求曲線的普通方程及的直角坐標方程;

)在極坐標系中, 是曲線的兩點,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】隨著高等級公路的迅速發(fā)展,公路綠化受到高度重視,需要大量各種苗木.某苗圃培植場對100棵“天竺桂”的移栽成活量(單位:棵)與在前三個月內澆水次數(shù)間的關系進行研究,根據(jù)以往的記錄,整理相關的數(shù)據(jù)信息如圖所示:

(1)結合圖中前4個矩形提供的數(shù)據(jù),利用最小二乘法求關于的回歸直線方程;

(2)用表示(1)中所求的回歸直線方程得到的100棵“天竺桂”的移栽成活量的估計值,當圖中余下的矩形對應的數(shù)據(jù)組的殘差的絕對值,則回歸直線方程有參考價值,試問:(1)中所得到的回歸直線方程有參考價值嗎?

(3)預測100棵“天竺桂”移栽后全部成活時,在前三個月內澆水的最佳次數(shù).

附:回歸直線方程為,其中,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,矩形和梯形所在平面互相垂直, , , .

(Ⅰ)求證 平面;

(Ⅱ)當的長為何值時,二面角的大小為60°

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】一臺機器由于使用時間較長,生產的零件有一些缺損,按不同轉速生產出來的零件有缺損的統(tǒng)計數(shù)據(jù)如下表所示.

(1)作出散點圖;

(2)如果y與x線性相關,求出回歸直線方程;

(3)若實際生產中,允許每小時的產品中有缺損的零件最多為10個,那么機器的運轉速度應控制在什么范圍內?

轉速x(轉/秒)

16

14

12

8

每小時生產有缺損零件數(shù)y(個)

11

9

8

5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某班級有50名學生,其中有30名男生和20名女生.隨機詢問了該班五名男生和五名女生在某次數(shù)學測驗中的成績,五名男生的成績分別為86,94,88,92,90,五名女生的成績分別為88,93,93,88,93.下列說法一定正確的是( )

A.這種抽樣方法是一種分層抽樣

B.這種抽樣方法是一種系統(tǒng)抽樣

C.這五名男生成績的方差大于這五名女生成績的方差

D.該班男生成績的平均數(shù)小于該班女生成績的平均數(shù)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了解本市居民的生活成本,甲、乙、丙三名同學利用假期分別對三個社區(qū)進行了“家庭每月日常消費額”的調查.他們將調查所得到的數(shù)據(jù)分別繪制成頻率分布直方圖(如圖所示),記甲、乙、丙所調查數(shù)據(jù)的標準差分別為s1、s2s3,則它們的大小關系為__________.(用“>”連接)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】抽查100袋洗衣粉,測得它們的重量如下(單位:g):

494 498 493 505 496 492 485 483 508

511 495 494 483 485 511 493 505 488

501 491 493 509 509 512 484 509 510

495 497 498 504 498 483 510 503 497

502 511 497 500 493 509 510 493 491

497 515 503 515 518 510 514 509 499

493 499 509 492 505 489 494 501 509

498 502 500 508 491 509 509 499 495

493 509 496 509 505 499 486 491 492

496 499 508 485 498 496 495 496 505

499 505 496 501 510 496 487 511 501

496

(1)列出樣本的頻率分布表:

(2)畫出頻率分布直方圖,頻率分布折線圖;

(3)估計重量在[494.5,506.5]g的頻率以及重量不足500g的頻率.

查看答案和解析>>

同步練習冊答案