已知函數(shù)f(x)=x3+ax2+x+1,a∈R.
(Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)設(shè)函數(shù)f(x)在區(qū)間(-
2
3
,-
1
3
)
內(nèi)是減函數(shù),求a的取值范圍.
分析:(I)由于是高次函數(shù),所以用導(dǎo)數(shù)法,先求導(dǎo),令f′(x)=0分二種情況討論:當(dāng)判別式△≤0時(shí)為增函數(shù),.當(dāng)△>0時(shí),由兩個(gè)不同的根,則為單調(diào)區(qū)間的分水嶺.
(II)先由函數(shù)求導(dǎo),再由“函數(shù)f(x)在區(qū)間(-
2
3
,-
1
3
)
內(nèi)是減函數(shù)”轉(zhuǎn)化為“f'(x)=3x2+2ax+1≤0在(-
2
3
,-
1
3
)
恒成立”,進(jìn)一步轉(zhuǎn)化為最值問題:2a≥
-1-3x2
x
(-
2
3
,-
1
3
)
恒成立,求得函數(shù)的最值即可.
解答:解:(1)f(x)=x3+ax2+x+1求導(dǎo):f'(x)=3x2+2ax+1
當(dāng)a2≤3時(shí),△≤0,f'(x)≥0,f(x)在R上遞增
當(dāng)a2>3,f'(x)=0求得兩根為x=
-a±
a2-3
3

即f(x)在(-∞,
-a-
a2-3
3
)
遞增,(
-a-
a2-3
3
,
-a+
a2-3
3
)
遞減,(
-a+
a2-3
3
,+∞)
遞增
(2)f'(x)=3x2+2ax+1≤0在(-
2
3
,-
1
3
)
恒成立.
2a≥
-1-3x2
x
(-
2
3
,-
1
3
)
恒成立.
可知
-1-3x2
x
(-
2
3
,-
3
3
)
上為減函數(shù),在(-
3
3
,-
1
3
)
上為增函數(shù).
-1-3x2
x
<4

所以a≥2.a(chǎn)的取值范圍是[2,+∞).
點(diǎn)評(píng):本題主要考查導(dǎo)數(shù)法研究函數(shù)的單調(diào)性,基本思路:當(dāng)函數(shù)是增函數(shù)時(shí),導(dǎo)數(shù)大于等于零恒成立,當(dāng)函數(shù)是減函數(shù)時(shí),導(dǎo)數(shù)小于等于零恒成立,然后轉(zhuǎn)化為求相應(yīng)函數(shù)的最值問題.(2)可以利用 f'(-
2
3
)≤0  且f'(-
1
3
)≤0,所以a≥2.a(chǎn)的取值范圍是[2,+∞).解答.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知函數(shù)f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分圖象如圖所示,則f(x)的解析式是(  )
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•深圳一模)已知函數(shù)f(x)=
1
3
x3+bx2+cx+d
,設(shè)曲線y=f(x)在與x軸交點(diǎn)處的切線為y=4x-12,f′(x)為f(x)的導(dǎo)函數(shù),且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設(shè)g(x)=x
f′(x)
 , m>0
,求函數(shù)g(x)在[0,m]上的最大值;
(3)設(shè)h(x)=lnf′(x),若對(duì)一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•上海模擬)已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當(dāng)a=1,b=2時(shí),求f(x)的最小值;
(2)若f(a)≥2m-1對(duì)任意0<a<b恒成立,求實(shí)數(shù)m的取值范圍;
(3)設(shè)k、c>0,當(dāng)a=k2,b=(k+c)2時(shí),記f(x)=f1(x);當(dāng)a=(k+c)2,b=(k+2c)2時(shí),記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:上海模擬 題型:解答題

已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當(dāng)a=1,b=2時(shí),求f(x)的最小值;
(2)若f(a)≥2m-1對(duì)任意0<a<b恒成立,求實(shí)數(shù)m的取值范圍;
(3)設(shè)k、c>0,當(dāng)a=k2,b=(k+c)2時(shí),記f(x)=f1(x);當(dāng)a=(k+c)2,b=(k+2c)2時(shí),記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:深圳一模 題型:解答題

已知函數(shù)f(x)=
1
3
x3+bx2+cx+d
,設(shè)曲線y=f(x)在與x軸交點(diǎn)處的切線為y=4x-12,f′(x)為f(x)的導(dǎo)函數(shù),且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設(shè)g(x)=x
f′(x)
 , m>0
,求函數(shù)g(x)在[0,m]上的最大值;
(3)設(shè)h(x)=lnf′(x),若對(duì)一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案