已知各項(xiàng)均為正數(shù)的等差數(shù)列{an}的公差d不等于0,設(shè)a1,a3,ak是公比為q的等比數(shù)列{bn}的前三項(xiàng),
(1)若k=7,a1=2;
(i)求數(shù)列{anbn}的前n項(xiàng)和Tn;
(ii)將數(shù)列{an}和{bn}的相同的項(xiàng)去掉,剩下的項(xiàng)依次構(gòu)成新的數(shù)列{cn},設(shè)其前n項(xiàng)和為Sn,求的值
(2)若存在m>k,m∈N*使得a1,a3,ak,am成等比數(shù)列,求證k為奇數(shù).
【答案】分析:(1)因?yàn)閗=7,所以a1,a3,a7成等比數(shù)列,又an是公差d≠0的等差數(shù)列,利用等差數(shù)列的通項(xiàng)公式及等比數(shù)列的定義可以得到an=a1+(n-1)d=n+1,bn=b1×qn-1=2n,
(i)用錯位相減法可求得anbn的前n項(xiàng)和為Tn=n×2n+1;
(ii)因?yàn)樾碌臄?shù)列{cn }的前2n-n-1項(xiàng)和為數(shù)列an的前2n-1項(xiàng)的和減去數(shù)列bn前n項(xiàng)的和,所以計算得到
(2)由題意由于(a1+2d)2=a1(a1+(k-1))d,整理得4d2=a1d(k-5),解方程得,又因?yàn)榇嬖趍>k,m∈N*使得a1,a3,ak,am成等比數(shù)列,及在正項(xiàng)等差數(shù)列{an}中,得到2[4+(m-1)(k-5)]=(k-3)3,分析數(shù)特點(diǎn)即可.
解答:解:(1)因?yàn)閗=7,所以a1,a3,a7成等比數(shù)列,又an是公差d≠0的等差數(shù)列,
所以(a1+2d)2=a1(a1+6d),整理得a1=2d,
又a1=2,所以d=1,b1=a1=2,,
所以an=a1+(n-1)d=n+1,bn=b1×qn-1=2n,
(i)用錯位相減法或其它方法可求得anbn的前n項(xiàng)和為Tn=n×2n+1
(ii)因?yàn)樾碌臄?shù)列{cn }的前2n-n-1項(xiàng)和為數(shù)列an的前2n-1項(xiàng)的和減去數(shù)列bn前n項(xiàng)的和,
所以
所以
(2)由(a1+2d)2=a1(a1+(k-1))d,整理得4d2=a1d(k-5),
因?yàn)閐≠0,所以,所以
因?yàn)榇嬖趍>k,m∈N*使得a1,a3,ak,am成等比數(shù)列,
所以
又在正項(xiàng)等差數(shù)列{an}中,
所以,又因?yàn)閍1>0,
所以有2[4+(m-1)(k-5)]=(k-3)3,
因?yàn)?[4+(m-1)(k-5)]是偶數(shù),所以(k-3)3也是偶數(shù),
即k-3為偶數(shù),所以k為奇數(shù).
點(diǎn)評:此題考查了等差數(shù)列,等比數(shù)列的定義及通項(xiàng)公式,還考查了解方程的能力,數(shù)列求和的錯位相減法,及學(xué)生的計算能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2011屆本溪縣高二暑期補(bǔ)課階段考試數(shù)學(xué)卷 題型:解答題

(本題滿分12分)已知各項(xiàng)均為正數(shù)的數(shù)列,
的等比中項(xiàng)。
(1)求證:數(shù)列是等差數(shù)列;(2)若的前n項(xiàng)和為Tn,求Tn。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年河北省石家莊高三上學(xué)期調(diào)研考試文科數(shù)學(xué)試卷(解析版) 題型:選擇題

已知各項(xiàng)均為正數(shù)的等比數(shù)列中,的等比中項(xiàng)為,則的最小值為(    )

A.16    B.8    C.    D.4

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013屆遼寧朝陽柳城高中高三上第三次月考理科數(shù)學(xué)試卷(解析版) 題型:解答題

 已知各項(xiàng)均為正數(shù)的數(shù)列

的等比中項(xiàng)。

(1)求證:數(shù)列是等差數(shù)列;(2)若的前n項(xiàng)和為Tn,求Tn。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013屆遼寧朝陽柳城高中高三上第三次月考文科數(shù)學(xué)試卷(解析版) 題型:解答題

(12分)已知各項(xiàng)均為正數(shù)的數(shù)列,

的等比中項(xiàng)。

(1)求證:數(shù)列是等差數(shù)列;

(2)若的前n項(xiàng)和為Tn,求Tn。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年本溪縣高二暑期補(bǔ)課階段考試數(shù)學(xué)卷 題型:解答題

(本題滿分12分)已知各項(xiàng)均為正數(shù)的數(shù)列

的等比中項(xiàng)。

(1)求證:數(shù)列是等差數(shù)列;(2)若的前n項(xiàng)和為Tn,求Tn。

 

查看答案和解析>>

同步練習(xí)冊答案