【題目】蘋果可按果徑(最大橫切面直徑,單位:.)分為五個等級:時為1級,時為2級,時為3級,時為4級,時為5級.不同果徑的蘋果,按照不同外觀指標(biāo)又分為特級果、一級果、二級果.某果園采摘蘋果10000個,果徑均在內(nèi),從中隨機(jī)抽取2000個蘋果進(jìn)行統(tǒng)計分析,得到如圖1所示的頻率分布直方圖,圖2為抽取的樣本中果徑在80以上的蘋果的等級分布統(tǒng)計圖.
(1)假設(shè)服從正態(tài)分布,其中的近似值為果徑的樣本平均數(shù)(同一組數(shù)據(jù)用該區(qū)間的中點(diǎn)值代替),,試估計采摘的10000個蘋果中,果徑位于區(qū)間的蘋果個數(shù);
(2)已知該果園今年共收獲果徑在80以上的蘋果,且售價為特級果12元,一級果10元,二級果9元.設(shè)該果園售出這蘋果的收入為,以頻率估計概率,求的數(shù)學(xué)期望.
附:若隨機(jī)變量服從正態(tài)分布,則
,,.
【答案】(1)8186(個)(2)見解析
【解析】
(1)由平均值公式計算均值,進(jìn)一步求得P(59.85<M<77.7)的值,即可求解;(2)確定特級果、一級果、二級果的概率,即可列出分布列求解
(1)=62.5×5×0.03+67.5×5×0.05+72.5×5×0.06+77.5×5×0.04+82.5×5×0.02=71.75.所以M服從正態(tài)分布N(71.75,35.4).
從而有P(59.85<M<77.7)=P(μ-2σ<Z<μ+σ)
=[P(μ-2σ<Z<μ+2σ)+P(μ-σ<Z<μ+σ)]=0.8186,
故采摘的10000個蘋果中,果徑位于區(qū)間(59.85,77.7)的蘋果個數(shù)約為10000×0.8186=8186(個).
(2)由圖2可知,果徑在80以上的蘋果中,特級果、一級果、二級果的概率分別為,,,
設(shè)出售1kg果徑在80以上蘋果的收入為Y,則Y的分布列為:
故E(Y)=12×+10×+9×=10.1,
所以E(X)=800E(Y)=8080元.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法中錯誤的是( )
A. 先把高二年級的名學(xué)生編號為到,再從編號為到的名學(xué)生中隨機(jī)抽取名學(xué)生,其編號為,然后抽取編號為,,的學(xué)生,這樣的抽樣方法是系統(tǒng)抽樣法.
B. 正態(tài)分布在區(qū)間和上取值的概率相等
C. 若兩個隨機(jī)變量的線性相關(guān)性越強(qiáng),則相關(guān)系數(shù)的值越接近于
D. 若一組數(shù)據(jù)的平均數(shù)是,則這組數(shù)據(jù)的眾數(shù)和中位數(shù)都是
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在棱長為2的正方體中,點(diǎn)是正方體棱上一點(diǎn),.
①若,則滿足條件的點(diǎn)的個數(shù)為______;
②若滿足的點(diǎn)的個數(shù)為6,則的取值范圍是______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,將橢圓上每一點(diǎn)的橫坐標(biāo)保持不變,縱坐標(biāo)變?yōu)樵瓉淼囊话耄们C,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為.
寫出曲線C的普通方程和直線l的直角坐標(biāo)方程;
已知點(diǎn)且直線l與曲線C交于A、B兩點(diǎn),求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某射手每次射擊擊中目標(biāo)的概率是,且各次射擊的結(jié)果互不影響.
(Ⅰ)假設(shè)這名射手射擊次,求有次連續(xù)擊中目標(biāo),另外次未擊中目標(biāo)的概率;
(Ⅱ)假設(shè)這名射手射擊次,記隨機(jī)變量為射手擊中目標(biāo)的次數(shù),求的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】雙曲線C:左、右焦點(diǎn)分別為,,左、右頂點(diǎn)分別為,B為虛軸的上頂點(diǎn),若直線上存在兩點(diǎn)使得,且過雙曲線的右焦點(diǎn)作斜率為1的直線與雙曲線的左、右兩支各有一個交點(diǎn),則雙曲線離心率的范圍是( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓E的方程為y2=1,其左焦點(diǎn)和右焦點(diǎn)分別為F1,F2,P是橢圓E上位于第一象限的一點(diǎn)
(1)若三角形PF1F2的面積為,求點(diǎn)P的坐標(biāo);
(2)設(shè)A(1,0),記線段PA的長度為d,求d的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓與拋物線y2=x有一個相同的焦點(diǎn),且該橢圓的離心率為.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)過點(diǎn)P(0,1)的直線與該橢圓交于A,B兩點(diǎn),O為坐標(biāo)原點(diǎn),若,求△AOB的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com