【題目】瑞士著名數(shù)學(xué)家歐拉在1765年提出定理:三角形的外心、重心、垂心位于同一直線上.這條直線被后人稱為三角形的“歐拉線”.在平面直角坐標(biāo)系中作△ABC,AB=AC=4,點B(-1,3),點C(4,-2),且其“歐拉線”與圓M:相切,則下列結(jié)論正確的是( )
A.圓M上點到直線的最小距離為2
B.圓M上點到直線的最大距離為3
C.若點(x,y)在圓M上,則的最小值是
D.圓與圓M有公共點,則a的取值范圍是
【答案】ACD
【解析】
由題意結(jié)合“歐拉線”概念可得△ABC的“歐拉線”即為線段BC的垂直平分線,結(jié)合直線方程的知識可得線段BC的垂直平分線的方程,由直線與圓相切可得圓M的方程;由圓心到直線的距離可判斷A、B;令,由直線與圓相切可得z的最值,即可判斷C;由圓與圓的位置關(guān)系即可判斷D;即可得解.
由AB=AC可得△ABC外心、重心、垂心均在線段BC的垂直平分線上,即△ABC的“歐拉線”即為線段BC的垂直平分線,
由點B(-1,3),點C(4,-2)可得線段BC的中點為,且直線的BC的斜率,
所以線段BC的垂直平分線的斜率,
所以線段BC的垂直平分線的方程為即,
又圓M:的圓心為,半徑為,
所以點到直線的距離為,
所以圓M:,
對于A、B,圓M的圓心到直線的距離,所以圓上的點到直線的最小距離為,最大距離為,故A正確,B錯誤;
對于C,令即,當(dāng)直線與圓M相切時,圓心到直線的距離為,解得或,則的最小值是,故C正確;
對于D,圓圓心為,半徑為,若該圓與圓M有公共點,則即,解得,故D正確.
故選:ACD.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在正方體中,是棱的中點,是側(cè)面內(nèi)的動點,且與平面的垂線垂直,如圖所示,下列說法不正確的序號為__________
①點的軌跡是一條線段.②與是異面直線.
③與不可能平行.④三棱錐的體積為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知平面內(nèi)兩點M(4,﹣2),N(2,4).
(1)求MN的垂直平分線方程;
(2)直線l經(jīng)過點A(3,0),且與直線MN平行,求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)、,給定下列命題:(1)不等式的解集為;(2)函數(shù)在上單調(diào)遞增,在上單調(diào)遞減;(3)若函數(shù)有兩個極值點,則;(4)若時,總有恒成立,則1.其中正確命題的序號為_________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為大力提倡“厲行節(jié)約,反對浪費”,某市通過隨機(jī)調(diào)查100名性別不同的居民是否做到“光盤”行動,得到如下列聯(lián)表:
| 做不到“光盤”行動 | 做到“光盤”行動 |
男 | 45 | 10 |
女 | 30 | 15 |
經(jīng)計算. 附表:
參照附表,得到的正確結(jié)論是( )
A.在犯錯誤的概率不超過的前提下,認(rèn)為“該市居民能否做到光盤行動與性別有關(guān)”
C.有以上的把握認(rèn)為“該市居民能否做到光盤行動與性別有關(guān)”
D.有以上的把握認(rèn)為“該市居民能否做到光盤行動與性別無關(guān)”
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在城市生活節(jié)奏超快的時代,自駕游出行已經(jīng)成了當(dāng)今許多家庭緩解壓力的一種方式,某地區(qū)8戶愛好自駕游家庭的年收入與年旅游支出的統(tǒng)計資料如下表所示:
年收入萬元 |
|
|
| 14 |
|
|
| 13 |
年旅游支出萬元 |
|
|
|
|
|
|
|
|
(1)若對呈線性相關(guān)關(guān)系,根據(jù)表中的數(shù)據(jù)求年旅游支出y關(guān)于年收入x的線性回歸方程;注:計算結(jié)果保留兩位小數(shù).
(2)據(jù)行內(nèi)統(tǒng)計數(shù)據(jù)顯示,若家庭年旅游投入達(dá)到4萬元,則在圈內(nèi)被譽為“狂游家庭”,若該地區(qū)某戶家庭的年收入為16萬元,預(yù)測其是否能夠步入“狂游家庭”行列.
參考公式及數(shù)據(jù):
,;,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知的三個頂點,,,其外接圓為圓H.
求圓H的標(biāo)準(zhǔn)方程;
若直線l過點C,且被圓H截得的弦長為2,求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某農(nóng)科所對冬季晝夜溫差大小與某反季大豆新品種發(fā)芽多少之間的關(guān)系進(jìn)行分析研究,他們分別記錄了2015年12月1日至12月5日的每天晝夜溫差與實驗室每天每100顆種子中的發(fā)芽數(shù),得到如表:
日期 | 12月1日 | 12月2日 | 12月3日 | 12月4日 | 12月5日 |
溫差x(℃) | 10 | 11 | 13 | 12 | 8 |
發(fā)芽數(shù)y(顆) | 23 | 25 | 30 | 26 | 16 |
該農(nóng)科所確定的研究方案是:先從這五組數(shù)據(jù)中選取2組,用剩下的3組數(shù)據(jù)求線性回歸方程,再對被選取的2組數(shù)據(jù)進(jìn)行檢驗.
(1)若選取的是12月1日與12月5日的兩組數(shù)據(jù),請根據(jù)12月2日至12月4日的數(shù)據(jù),求出y關(guān)于x的線性回歸方程bx+a;
(2)若由線性回歸方程得到的估計數(shù)據(jù)與所選出的檢驗數(shù)據(jù)的誤差均不超過2顆,則認(rèn)為得到的線性回歸方程是可靠的,試問(2)中所得到的線性回歸方程是否可靠?
,.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com