【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),以原點為極點,以x軸正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)求曲線的極坐標(biāo)方程與曲線的直角坐標(biāo)方程;
(2)設(shè)、為曲線上位于第一,二象限的兩個動點,且,射線,交曲線分別于點,.求面積的最小值,并求此時四邊形的面積.
【答案】(1):,:.(2)面積的最小值:,四邊形的面積為:.
【解析】
(1)將曲線消去參數(shù)即可得到的普通方程,將,代入曲線的極坐標(biāo)方程即可;
(2)由(1)得曲線的極坐標(biāo)方程,設(shè),,,利用方程可得,再利用基本不等式得,根據(jù)題意知,進而可得四邊形的面積.
(1)由曲線的參數(shù)方程為(為參數(shù))
消去參數(shù)得
即曲線的極坐標(biāo)方程為:,化簡為:
的極坐標(biāo)方程為
可得,
根據(jù)極坐標(biāo)與直角坐標(biāo)的互化公式:
故:,
曲線的直角坐標(biāo)方程:.
(2)設(shè)
:
,,
故
根據(jù)均值不等式可得:,
當(dāng)且僅當(dāng)(即)時取“=”.
,
此時
故所求四邊形的面積為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線C1:和圓C2:(x-6)2+(y-1)2=1,過圓C2上一點P作圓的切線MN交拋物線C,于M,N兩點,若點P為MN的中點,則切線MN的斜率k>1時的直線方程為( )
A.4x-3y-22=0B.4x-3y-16=0C.2x-y-11+5=0D.4x-3y-26=0
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點O為極點,x軸的正半軸為極軸,建立極坐標(biāo)系.
(1)設(shè)射線l的極坐標(biāo)方程為,若射線l與曲線C交于A,B兩點,求AB的長;
(2)設(shè)M,N是曲線C上的兩點,若∠MON,求的面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),將此函數(shù)圖象分別作以下變換,那么變換后的圖象可以與原圖象重合的變換方式有( )
①繞著x軸上一點旋轉(zhuǎn);②以x軸為軸,作軸對稱;
③沿x軸正方向平移;④以x軸的某一條垂線為軸,作軸對稱;
A.①③B.③④C.②③D.②④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某地出現(xiàn)了蟲害,農(nóng)業(yè)科學(xué)家引入了“蟲害指數(shù)”數(shù)列,表示第周的蟲害的嚴(yán)重程度,蟲害指數(shù)越大,嚴(yán)重程度越高,為了治理蟲害,需要環(huán)境整治、殺滅害蟲,然而由于人力資源有限,每周只能采取以下兩個策略之一:
策略:環(huán)境整治,“蟲害指數(shù)”數(shù)列滿足;
策略:殺滅害蟲,“蟲害指數(shù)”數(shù)列滿足;
當(dāng)某周“蟲害指數(shù)”小于1時,危機就在這周解除.
(1)設(shè)第一周的蟲害指數(shù),用哪一個策略將使第二周的蟲害嚴(yán)重程度更小?
(2)設(shè)第一周的蟲害指數(shù),如果每周都采用最優(yōu)的策略,蟲害的危機最快在第幾周解除?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓,動點,線段QF與圓F相交于點P,線段PQ的長度與點Q到y軸的距離相等.
(Ⅰ)求動點Q的軌跡W的方程;
(Ⅱ)過點作兩條互相垂直的直線與W的交點分別是M和N(M在N的上方,A,M,N為不同的三點),求向量在y軸正方向上的投影的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】共享單車又稱為小黃車,近年來逐漸走進了人們的生活,也成為減少空氣污染,緩解城市交通壓力的一種重要手段.為調(diào)查某地區(qū)居民對共享單車的使用情況,從該地區(qū)居民中按年齡用隨機抽樣的方式隨機抽取了人進行問卷調(diào)查,得到這人對共享單車的評價得分統(tǒng)計填入莖葉圖,如下所示(滿分分):
(1)找出居民問卷得分的眾數(shù)和中位數(shù);
(2)請計算這位居民問卷的平均得分;
(3)若在成績?yōu)?/span>分的居民中隨機抽取人,求恰有人成績超過分的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)()的圖象上的動點到原點的距離的平方的最小值為.
(1)求的值;
(2)設(shè),若函數(shù)有兩個極值點、,且,證明:.(參考公式:)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com