如果在一種運算中,計算x0k(k=2,3,4,…,n)的值需要k-1次乘法,計算P3(x0)的值共需要9次運算(6次乘法,3次加法),那么計算Pn(x0)的值共需___________次運算.
下面給出一種減法運算:P0(x)=a0,Pk+1(x)=xPk(x)+ak+1(k=0,1,2,…,n-1).利用該算法,計算P3(x0)的值共需6次運算,計算Pn(x0)的值共需__________-次運算.
解析:∵Pn(x)=a0xn+a1xn-1+…+an-1x+an,a0xn需算n次乘法,akxn-k需算n-k次乘法,
∴Pn(x0)共需n+(n-1)+(n-2)+…+1+0=次乘法.
∵Pn(x0)共有n+1項,∴共需(n+1)-1次加法.
∴Pn(x0)共需計算+(n+1)-1=+n次.
∵Pk+1(x)=xPk(x)+ak+1,設(shè)Pk(x)共需算Pk次,
∴x·Pk(x)共需算Pk+1次,
xPk(x)+ak+1共需算Pk+2次.
∴Pk+1=Pk+2.
∴{Pk}是首項為P1,公差為2的等差數(shù)列,P1=P0+2=2.
∴Pn=2+(n-2)×2=2n.
答案:+ 2n
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
x | k 0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
1 |
2 |
1 |
2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
下面給出一種減少運算次數(shù)的算法:P0(x)=a0,Pk+1(x)=xPk(x)+ak+1(k=0, 1,2,…,n-1).利用該算法,計算P3(x0)的值共需要6次運算,計算P10(x0)的值共需要______________次運算.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com