若b∈[0,4],則函數(shù)f(x)=x3+bx2+x在R上有兩個相異極值點的概率是( 。
A、
3
6
B、
3
4
C、1-
3
4
D、1-
3
6
考點:幾何概型,利用導(dǎo)數(shù)研究函數(shù)的極值
專題:計算題,概率與統(tǒng)計
分析:先利用導(dǎo)數(shù)求出函數(shù)在R上有兩個相異極值點的充要條件,得出關(guān)于b的約束條件,即可求出概率.
解答: 解:易得f′(x)=3x2+2bx+1,
函數(shù)f(x)=x3+bx2+x在R上有兩個相異極值點的充要條件:導(dǎo)函數(shù)的判別式大于0,即4b2-12>0,
∵b∈[0,4],
∴b∈[
3
,4],
∴函數(shù)f(x)=x3+bx2+x在R上有兩個相異極值點的概率是
4-
3
4
=1-
3
4

故選:C.
點評:如果每個事件發(fā)生的概率只與構(gòu)成該事件區(qū)域的長度(面積或體積)成比例,則稱這樣的概率模型為幾何概率模型,簡稱為幾何概型.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知三個函數(shù)f(x)=2x+x,g(x)=x-2,h(x)=log2x+x的零點依次為r,s,t,則r,s,t的大小關(guān)系為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=kax-a-x(a>0且a≠1)在(-∞,+∞)上既是奇函數(shù)又是增函數(shù),則函數(shù)g(x)=loga(x+k)的圖象是( 。
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知x=
4
3
,y=
1
3
,求
x3
-
y3
x
-
y
-
x3
+
y3
x
+
y
=( 。
A、
1
3
B、1
C、
4
3
D、
5
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

令函數(shù)f(x)=
sin
πx
2
,x∈[-1,1]
1-|2-x|,x∈(1,3]
,若mf(x)=x恰有2個根,則m的值為( 。
A、1B、2C、3D、0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合M={y|y>1},N={y|y=x2,x∈R},則M∩N=(  )
A、(0,+∞)
B、[0,+∞)
C、(1,+∞)
D、[1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若2a=3b=6c=t(t>1),則a,b,c之間一定滿足的關(guān)系是( 。
A、3a+2b=c2
B、a×b=c
C、
1
a
+
1
b
=
1
c
D、a3+b2=c

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

橢圓
x2
9
+
y2
25
=1上一動點P到兩焦點距離之和為(  )
A、10B、8C、6D、不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)已知函數(shù)f(x)=2x-x2,問方程f(x)=0在區(qū)間[-1,0]內(nèi)是否有解,為什么?
(2)若方程ax2-x-1=0在(0,1)內(nèi)恰有一解,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案