求同時滿足下列兩個條件的所有復(fù)數(shù).

(1)是實數(shù),且;

(2)的實部和虛部都是整數(shù).

 

【答案】

【解析】

試題分析:解:為實數(shù),且,

,則,且,

于是.            ①

方程①是關(guān)于的實數(shù)一元二次方程,且有,(因為

故解得.           ②

的實部和虛部都是整數(shù),

所以只能取兩個值.

可求得滿足條件的所有復(fù)數(shù):

考點:本題主要考查復(fù)數(shù)的概念,實系數(shù)一元二次方程,復(fù)數(shù)的四則運算。

點評:典型題,能很好地體現(xiàn)轉(zhuǎn)化與化歸思想,要善于運用聯(lián)系的觀點處理問題。

 

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}中,a1=3,a2=5,其前n項和Sn滿足Sn+Sn-2=2Sn-1+2n-1(n≥3).令bn=
1
anan+1

(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)若f(x)=2x-1,求證:Tn=b1f(1)+b2f(2)+…+bnf(n)<
1
6
(n≥1);
(Ⅲ)令Tn=
1
2
(b1a+b2a2+b3a3+…+bnan)
(a>0),求同時滿足下列兩個條件的所有a的值:①對于任意正整數(shù)n,都有Tn
1
6
;②對于任意的m∈(0,
1
6
)
,均存在n0∈N*,使得n≥n0時,Tn>m.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知在數(shù)列{an}中,a1=t,a2=t2,其中t>0,x=
t
是函數(shù)f(x)=an-1x3-3[(t+1)an-an+1]x+1(n≥2)的一個極值點
(Ⅰ)求數(shù)列{an}的通項公式
(Ⅱ)當t=2時,令bn=
an-1
(an+1)(an+1+1)
,數(shù)列{bn}前n項的和為Sn,求證:Sn
1
6

(Ⅲ)設(shè)cn=
1
2
an
(2n+1)(2n+1+1)
,數(shù)列{cn}前n項的和為Tn,求同時滿足下列兩個條件的t的值:
(1)Tn
1
6

(2)對于任意的m∈(0,
1
6
)
,均存在k∈N*,當n≥k時,Tn>m.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

求同時滿足下列兩個條件的所有復(fù)數(shù)z:
①z+
10
z
是實數(shù),且1<z+
10
z
≤6;
②z的實部和虛部都是整數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(本小題滿分14分)已知數(shù)列中,,,其前項和滿足.令.

(Ⅰ)求數(shù)列的通項公式;

(Ⅱ)若,求證:);

(Ⅲ)令),求同時滿足下列兩個條件的所有的值:①對于任意正整數(shù),都有;②對于任意的,均存在,使得時,.

查看答案和解析>>

同步練習冊答案