設(shè)動(dòng)點(diǎn)P(x,y)(x≥0)到定點(diǎn)F的距離比到y(tǒng)軸的距離大.記點(diǎn)P的軌跡為曲線C.
(1)求點(diǎn)P的軌跡方程;
(2)設(shè)圓M過A(1,0),且圓心M在P的軌跡上,BD是圓M在y軸上截得的弦,當(dāng)M運(yùn)動(dòng)時(shí)弦長(zhǎng)BD是否為定值?說明理由;
(3)過F作互相垂直的兩直線交曲線C于G、H、R、S,求四邊形GRHS面積的最小值.

(1) y2=2x  (2) BD=2,即弦長(zhǎng)BD為定值   (3)8

解析解:(1)由題意知,所求動(dòng)點(diǎn)P(x,y)的軌跡為以F為焦點(diǎn),直線l:x=-為準(zhǔn)線的拋物線,其方程為y2=2x.
(2)是定值.解法如下:設(shè)圓心M,
半徑r=,
圓的方程為+(y-a)2=a2+,
令x=0,得B(0,1+a),D(0,-1+a),
∴BD=2,即弦長(zhǎng)BD為定值.
(3)設(shè)過F的直線GH的方程為y=k,G(x1,y1),H(x2,y2),
得k2x2-(k2+2)x+=0,
∴x1+x2=1+,x1x2=,
∴|GH|=·=2+,
同理得|RS|=2+2k2.
S四邊形GRHS=(2+2k2)= 2≥8(當(dāng)且僅當(dāng)k=±1時(shí)取等號(hào)).
∴四邊形GRHS面積的最小值為8.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知是橢圓的兩個(gè)焦點(diǎn),為坐標(biāo)原點(diǎn),點(diǎn)在橢圓上,且,⊙是以為直徑的圓,直線與⊙相切,并且與橢圓交于不同的兩點(diǎn)

(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)當(dāng),且滿足時(shí),求弦長(zhǎng)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知點(diǎn)、,若動(dòng)點(diǎn)滿足
(1)求動(dòng)點(diǎn)的軌跡曲線的方程;
(2)在曲線上求一點(diǎn),使點(diǎn)到直線:的距離最。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè),分別是橢圓的左、右焦點(diǎn),過作傾斜角為的直線交橢圓,兩點(diǎn), 到直線的距離為,連接橢圓的四個(gè)頂點(diǎn)得到的菱形面積為.
(1)求橢圓的方程;
(2)已知點(diǎn),設(shè)是橢圓上的一點(diǎn),過、兩點(diǎn)的直線軸于點(diǎn),若, 求的取值范圍;
(3)作直線與橢圓交于不同的兩點(diǎn),,其中點(diǎn)的坐標(biāo)為,若點(diǎn)是線段垂直平分線上一點(diǎn),且滿足,求實(shí)數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,等邊三角形OAB的邊長(zhǎng)為8,且其三個(gè)頂點(diǎn)均在拋物線E:x2=2py(p>0)上.

(1)求拋物線E的方程;
(2)設(shè)動(dòng)直線l與拋物線E相切于點(diǎn)P,與直線y=-1相交于點(diǎn)Q,證明以PQ為直徑的圓恒過y軸上某定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓M=1(ab>0)的短半軸長(zhǎng)b=1,且橢圓上一點(diǎn)與橢圓的兩個(gè)焦點(diǎn)構(gòu)成的三角形的周長(zhǎng)為6+4.
(1)求橢圓M的方程;
(2)設(shè)直線lxmyt與橢圓M交于A,B兩點(diǎn),若以AB為直徑的圓經(jīng)過橢圓的右頂點(diǎn)C,求t的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知直線y=-2上有一個(gè)動(dòng)點(diǎn)Q,過點(diǎn)Q作直線l1垂直于x軸,動(dòng)點(diǎn)P在l1上,且滿足OP⊥OQ(O為坐標(biāo)原點(diǎn)),記點(diǎn)P的軌跡為C.
(1)求曲線C的方程.
(2)若直線l2是曲線C的一條切線,當(dāng)點(diǎn)(0,2)到直線l2的距離最短時(shí),求直線l2的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知雙曲線的中心在原點(diǎn),焦點(diǎn)F1,F2在坐標(biāo)軸上,離心率為,且過點(diǎn)P(4,-).
(1)求雙曲線的方程.
(2)若點(diǎn)M(3,m)在雙曲線上,求證:·=0.
(3)求△F1MF2的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)拋物線的頂點(diǎn)在原點(diǎn),準(zhǔn)線方程為x=-.
(1)求拋物線的標(biāo)準(zhǔn)方程;
(2)若點(diǎn)P是拋物線上的動(dòng)點(diǎn),點(diǎn)P在y軸上的射影是Q,點(diǎn)M,試判斷|PM|+|PQ|是否存在最小值,若存在,求出其最小值,若不存在,請(qǐng)說明理由;
(3)過拋物線焦點(diǎn)F作互相垂直的兩直線分別交拋物線于A,C,B,D,求四邊形ABCD面積的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案