設(shè)平面向量am=(m,1),bn=(2,n),其中m,n∈{1,2,3,4},
(Ⅰ)請(qǐng)列出有序數(shù)組(m,n)的所有可能結(jié)果;
(Ⅱ)記“使得am⊥(am-bn)成立的(m,n)”為事件A,求事件A發(fā)生的概率。
解:(Ⅰ)有序數(shù)組(m,n)的所有可能結(jié)果為:(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4),共16個(gè);
(Ⅱ)由am⊥(am-bn),得m2-2m+1-n=0,即n=(m-1)2,
由于m,n∈{1,2,3,4},
故事件A包含的基本事件為(2,1)和(3,4),共2個(gè),
又基本事件的總數(shù)為16,
故所求的概率為P(A)=
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)在平面向量中有如下定理:設(shè)點(diǎn)O、P、Q、R為同一平面內(nèi)的點(diǎn),則P、Q、R三點(diǎn)共線的充要條件是:存在實(shí)數(shù)t,使
OP
=(1-t)
OQ
+t
OR
.試?yán)迷摱ɡ斫獯鹣铝袉?wèn)題:
如圖,在△ABC中,點(diǎn)E為AB邊的中點(diǎn),點(diǎn)F在AC邊上,且CF=2FA,BF交CE于點(diǎn)M,設(shè)
AM
=x
AE
+y
AF
,則x+2y=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,已知正三棱柱ABC-A1B1C1的底面邊長(zhǎng)為1,高為h(h>2),動(dòng)點(diǎn)M在側(cè)棱BB1上移動(dòng).設(shè)AM與側(cè)面BB1C1C所成的角為θ.
(1)當(dāng)θ∈[
π
6
π
4
]
時(shí),求點(diǎn)M到平面ABC的距離的取值范圍;
(2)當(dāng)θ=
π
6
時(shí),求向量
AM
BC
夾角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列命題正確的個(gè)數(shù)為( 。
①斜線與它在平面內(nèi)的射影所成的角是這條斜線和這個(gè)平面內(nèi)所有直線所成的角的最小角.
②二面角α-l-β的平面角是過(guò)棱l上任一點(diǎn)O,分別在兩個(gè)半平面內(nèi)任意兩條射線OA,OB所成角的∠AOB的最大角.
③如果一條直線和一個(gè)平面的一條斜線垂直,那么它也和這條斜線在這個(gè)平面內(nèi)的射影垂直.
④設(shè)A是空間一點(diǎn),
n
為空間任一非零向量,適合條件的集合{
M
|
AM
n
=0
}的所有點(diǎn)M構(gòu)成的圖形是過(guò)點(diǎn)A且與
n
垂直的一個(gè)平面.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011•惠州二模)在平面向量中有如下定理:設(shè)點(diǎn)O,P,Q,R為同一平面內(nèi)的點(diǎn),則P,Q,R三點(diǎn)共線的充要條件是:存在實(shí)數(shù)t,使
OP
=(1-t)
OQ
+t
OR
.如圖,在△ABC中,點(diǎn)E為AB邊的中點(diǎn),點(diǎn)F在AC邊上,且CF=2FA,BF交CE于點(diǎn)M,設(shè)
AM
=x
AE
+y
AF
,則( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案