某租賃公司擁有汽車100輛.當(dāng)每輛車的月租金為3000元時(shí),可全部租出.當(dāng)每輛車的月租金每增加50元時(shí),未租出的車將會(huì)增加一輛.租出的車每輛每月需要維護(hù)費(fèi)150元,未租出的車每輛每月需要維護(hù)需50元.
(Ⅰ)當(dāng)每輛車的月租金定為3600元時(shí),能租出多少輛車?
(Ⅱ)當(dāng)每輛車的月租金定為多少元時(shí),租賃公司的月收益最大?最大月收益是多少?

解:(Ⅰ)當(dāng)每輛車的月租金定為3600元時(shí),未租出的車輛數(shù)為,所以這時(shí)租出了88輛車.
(Ⅱ)設(shè)每輛車的月租金定為x元,則租賃公司的收益為

解析

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

.(本小題13分)計(jì)算下列各式
(1)                              

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

.(本小題滿分12分)
某服裝廠生產(chǎn)一種服裝,每件服裝的成本為40元,出廠單價(jià)定為60元.該廠為鼓勵(lì)銷售商訂購(gòu),決定當(dāng)一次訂購(gòu)量超過(guò)100件時(shí),每多訂購(gòu)一件,訂購(gòu)的全部服裝的出廠單價(jià)就降低0.02元.根據(jù)市場(chǎng)調(diào)查,銷售商一次訂購(gòu)量不會(huì)超過(guò)500件.
(1)設(shè)一次訂購(gòu)量為x件,服裝的實(shí)際出廠單價(jià)為P元,寫出函數(shù)P=f(x)的表達(dá)式;
(2)當(dāng)銷售商一次訂購(gòu)多少件時(shí),該服裝廠獲得的利潤(rùn)最大,最大利潤(rùn)是多少元?
(服裝廠售出一件服裝的利潤(rùn)=實(shí)際出廠單價(jià)成本)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)函數(shù)
(1)求函數(shù)的零點(diǎn);
(2)在坐標(biāo)系中畫出函數(shù)的圖象;
(3)討論方程解的情況.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

函數(shù)滿足:①定義域是; ②當(dāng)時(shí),;
③對(duì)任意,總有
(1)求出的值;
(2)判斷函數(shù)的單調(diào)性,并用單調(diào)性的定義證明你的結(jié)論;
(3)寫出一個(gè)滿足上述條件的具體函數(shù)。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題共10分)已知函數(shù).
(1)求函數(shù)的定義域;
(2)求函數(shù)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

某自來(lái)水廠的蓄水池中有噸水,每天零點(diǎn)開始向居民供水,同時(shí)以每小時(shí)噸的速度向池中注水.已知小時(shí)內(nèi)向居民供水總量為,問
(1)每天幾點(diǎn)時(shí)蓄水池中的存水量最少?
(2)若池中存水量不多于噸時(shí),就會(huì)出現(xiàn)供水緊張現(xiàn)象,則每天會(huì)有幾個(gè)小時(shí)出現(xiàn)這種現(xiàn)象?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分14分)已知是二次函數(shù),不等式的解集是,且在區(qū)間上的最大值是.
(1)求的解析式;
(2)設(shè)函數(shù)上的最小值為,求的表達(dá)式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)
(1)解不等式
(2)若不等式的解集為空集,求的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案