【題目】在直角坐標(biāo)系中,曲線C的參數(shù)方程為為參數(shù).在以原點為極點,為參數(shù)).在以原點為極點,軸的正半軸為極軸的極坐標(biāo)系中,直線的極坐標(biāo)方程為

(Ⅰ)求曲線C的普通方程和直線的直角坐標(biāo)方程;

(Ⅱ)設(shè),直線與曲線C交于M,N兩點,求的值.

【答案】(Ⅰ),;(Ⅱ)7.

【解析】

(Ⅰ)直接把曲線C的參數(shù)方程平方相加,可以消除參數(shù),得到普通方程,結(jié)合極坐標(biāo)與直角坐標(biāo)的互化公式可得直線的直角坐標(biāo)方程;(Ⅱ)先寫出直線的標(biāo)準(zhǔn)式參數(shù)方程,代入曲線方程,化為關(guān)于的一元二次方程,再由根與系數(shù)的關(guān)系及的幾何意義,即可求出。

(I) 曲線C的普通方程:

直線l的直角坐標(biāo)方程:;

II)設(shè)直線l的參數(shù)方程為t為參數(shù))

代入

,故

設(shè)對應(yīng)的對數(shù)分別為,

,

.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù),,

(1)若函數(shù)有兩個零點,試求的取值范圍;

(2)證明

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】近期,某公交公司與銀行開展云閃付乘車支付活動,吸引了眾多乘客使用這種支付方式.某線路公交車準(zhǔn)備用20天時間開展推廣活動,他們組織有關(guān)工作人員,對活動的前七天使用云閃付支付的人次數(shù)據(jù)做了初步處理,設(shè)第x天使用云閃付支付的人次為y,得到如圖所示的散點圖.

由統(tǒng)計圖表可知,可用函數(shù)yabx擬合yx的關(guān)系

1)求y關(guān)于x的回歸方程;

2)預(yù)測推廣期內(nèi)第幾天起使用云閃付支付的人次將超過10000人次.

附:①參考數(shù)據(jù)

xi2

xiyi

xivi

4

360

2.30

140

14710

71.40

表中vilgyi,lgyi

②參考公式:對于一組數(shù)據(jù)(u1v1),(u2v2)…,(un,vn),其回歸直線vα+βu的斜率和截距的最小二乘估計分別為βα

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在梯形中,,,,四邊形是菱形,.

(Ⅰ)求證:

(Ⅱ)求二面角的平面角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】我國是枇把生產(chǎn)大國,在對枇杷的長期栽培和選育中,形成了眾多的品種.成熟的枇杷味道甜美,營養(yǎng)頗豐,而且中醫(yī)認(rèn)為枇杷有潤肺、止咳、止渴的功效.因此,枇杷受到大家的喜愛.某果農(nóng)調(diào)查了枇杷上市時間與賣出數(shù)量的關(guān)系,統(tǒng)計如表所示:

結(jié)合散點圖可知,線性相關(guān).

(Ⅰ)求關(guān)于的線性回歸方程(其中用假分?jǐn)?shù)表示);

(Ⅱ)計算相關(guān)系數(shù),并說明(I)中線性回歸模型的擬合效果.

參考數(shù)據(jù):

參考公式:回歸直線方程中的斜率和截距的最小二乘法估計公式分別為:

;相關(guān)系數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)為定義在上的奇函數(shù),且當(dāng)時,

(Ⅰ)求函數(shù)的解析式;

(Ⅱ)求函數(shù)在區(qū)間 上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】己知函數(shù)是減函數(shù),則實數(shù)( )

A.2B.1C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,摩天輪的半徑為50m,圓心O距地面的高度為65m.已知摩天輪按逆時針方向勻速轉(zhuǎn)動,每30min轉(zhuǎn)動一圈.游客在摩天輪的艙位轉(zhuǎn)到距離地面最近的位置進(jìn)艙.

1)游客進(jìn)入摩天輪的艙位,開始轉(zhuǎn)動tmin后,他距離地面的高度為h,求h關(guān)于t的函數(shù)解析式;

2)已知在距離地面超過40m的高度,游客可以觀看到游樂場全景,那么在摩天輪轉(zhuǎn)動一圈的過程中,游客可以觀看到游樂場全景的時間是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知

(1)求的單調(diào)區(qū)間;

(2)設(shè),為函數(shù)的兩個零點,求證:.

查看答案和解析>>

同步練習(xí)冊答案