【題目】在直角坐標(biāo)系中,曲線C的參數(shù)方程為為參數(shù).在以原點為極點,為參數(shù)).在以原點為極點,軸的正半軸為極軸的極坐標(biāo)系中,直線的極坐標(biāo)方程為.
(Ⅰ)求曲線C的普通方程和直線的直角坐標(biāo)方程;
(Ⅱ)設(shè),直線與曲線C交于M,N兩點,求的值.
【答案】(Ⅰ),;(Ⅱ)7.
【解析】
(Ⅰ)直接把曲線C的參數(shù)方程平方相加,可以消除參數(shù),得到普通方程,結(jié)合極坐標(biāo)與直角坐標(biāo)的互化公式可得直線的直角坐標(biāo)方程;(Ⅱ)先寫出直線的標(biāo)準(zhǔn)式參數(shù)方程,代入曲線方程,化為關(guān)于的一元二次方程,再由根與系數(shù)的關(guān)系及的幾何意義,即可求出。
(I) 曲線C的普通方程:,
直線l的直角坐標(biāo)方程:;
(II)設(shè)直線l的參數(shù)方程為(t為參數(shù))
代入,
得,故;
設(shè)對應(yīng)的對數(shù)分別為,
則,
故.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】近期,某公交公司與銀行開展云閃付乘車支付活動,吸引了眾多乘客使用這種支付方式.某線路公交車準(zhǔn)備用20天時間開展推廣活動,他們組織有關(guān)工作人員,對活動的前七天使用云閃付支付的人次數(shù)據(jù)做了初步處理,設(shè)第x天使用云閃付支付的人次為y,得到如圖所示的散點圖.
由統(tǒng)計圖表可知,可用函數(shù)y=abx擬合y與x的關(guān)系
(1)求y關(guān)于x的回歸方程;
(2)預(yù)測推廣期內(nèi)第幾天起使用云閃付支付的人次將超過10000人次.
附:①參考數(shù)據(jù)
xi2 | xiyi | xivi | |||
4 | 360 | 2.30 | 140 | 14710 | 71.40 |
表中vi=lgyi,lgyi
②參考公式:對于一組數(shù)據(jù)(u1,v1),(u2,v2)…,(un,vn),其回歸直線v=α+βu的斜率和截距的最小二乘估計分別為β,α.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我國是枇把生產(chǎn)大國,在對枇杷的長期栽培和選育中,形成了眾多的品種.成熟的枇杷味道甜美,營養(yǎng)頗豐,而且中醫(yī)認(rèn)為枇杷有潤肺、止咳、止渴的功效.因此,枇杷受到大家的喜愛.某果農(nóng)調(diào)查了枇杷上市時間與賣出數(shù)量的關(guān)系,統(tǒng)計如表所示:
結(jié)合散點圖可知,線性相關(guān).
(Ⅰ)求關(guān)于的線性回歸方程=(其中,用假分?jǐn)?shù)表示);
(Ⅱ)計算相關(guān)系數(shù),并說明(I)中線性回歸模型的擬合效果.
參考數(shù)據(jù):;
參考公式:回歸直線方程=中的斜率和截距的最小二乘法估計公式分別為:
;相關(guān)系數(shù)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)為定義在上的奇函數(shù),且當(dāng)時,
(Ⅰ)求函數(shù)的解析式;
(Ⅱ)求函數(shù)在區(qū)間 上的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,摩天輪的半徑為50m,圓心O距地面的高度為65m.已知摩天輪按逆時針方向勻速轉(zhuǎn)動,每30min轉(zhuǎn)動一圈.游客在摩天輪的艙位轉(zhuǎn)到距離地面最近的位置進(jìn)艙.
(1)游客進(jìn)入摩天輪的艙位,開始轉(zhuǎn)動tmin后,他距離地面的高度為h,求h關(guān)于t的函數(shù)解析式;
(2)已知在距離地面超過40m的高度,游客可以觀看到游樂場全景,那么在摩天輪轉(zhuǎn)動一圈的過程中,游客可以觀看到游樂場全景的時間是多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com