雙曲線的實軸長為12,焦距為20,則該雙曲線的標準方程為(  )
A.
x2
36
-
y2
64
=1
B.
x2
64
-
y2
36
=1
C.
x2
36
-
y2
64
=1
x2
64
-
y2
36
=1
D.
y2
36
-
x2
64
=1
因為雙曲線的實軸長為12,焦距為20,
所以a=6,c=10,所以b=8,
雙曲線的實軸在x軸也可能在y軸.
所以該雙曲線的標準方程為:
x2
36
-
y2
64
=1
x2
64
-
y2
36
=1

故選C.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓C的對稱中心為原點O,焦點在x軸上,離心率為
1
2
,且點(1,
3
2
)在該橢圓上.
(Ⅰ)求橢圓C的方程;
(Ⅱ)過橢圓C的左焦點F1的直線l與橢圓C相交于A,B兩點,若△AOB的面積為
6
2
7
,求圓心在原點O且與直線l相切的圓的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知橢圓過點(3,0)且離心率為
6
3
,則橢圓標準方程為______.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓
x2
2
+y2=1
的左右焦點分別為F1,F(xiàn)2,若過點P(0,-2)及F1的直線交橢圓于A,B兩點,求△ABF2的面積.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知點P在橢圓
x2
49
+
y2
24
=1
上,F(xiàn)1、F2是橢圓的焦點,且PF1⊥PF2,求
(1)|PF1|•|PF2|
(2)△PF1F2的面積.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

請閱讀以下材料,然后解決問題:
①設橢圓的長半軸長為m短半軸長為b,則橢圓的面積為πab
②我們把由半橢圓C1
y2
b2
+
x2
c2
=1(x≤0)與半橢圓C2
x2
a2
+
y2
b2
=1(x≥0)合成的曲線稱作“果圓”,其中a2=b2+c2,a>0,b>c>0
如圖,設點F0,F(xiàn)1,F(xiàn)2是相應橢圓的焦點,A1,A2和B1,B2是“果圓”與x,y軸的交點,若△F0F1F2是邊長為1的等邊三角形,則上述“果圓”的面積為:______.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

過橢圓
x2
16
+
y2
9
=1
的一個焦點F1的直線與橢圓交于A,B兩點,則A,B與橢圓的另一個焦點F2構成△ABF2,則△ABF2的周長是______.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

若橢圓的焦距長等于它的短軸長,則橢圓的離心率等于______.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

巳知F1,F(xiàn)2是橢圓
x2
a2
+
y2
b2
=1
(a>b>0)的兩焦點,以線段F1F2為邊作正三角形PF1F2,若邊PF1的中點在橢圓上,則該橢圓的離心率是( 。
A.
3
-1
B.
3
+1
C.
1
2
D.
3
-1
2

查看答案和解析>>

同步練習冊答案