在直角坐標(biāo)系中,定義兩點(diǎn)P(x1,y1),Q(x2,y2)之間的“直角距離”為d(P,Q)=|x1-x2|+|y1-y2|.現(xiàn)有下列命題:
①若P,Q是x軸上兩點(diǎn),則d(P,Q)=|x1-x2|;
②已知P(1,3),Q(sin2a,cos2a)(a∈R),則d(P,Q)為定值;
③原點(diǎn)O到直線x-y+1=0上任一點(diǎn)P的直角距離d(O,P)的最小值為
2
2

④設(shè)A(x,y)且x∈Z,y∈Z,若點(diǎn)A是在過(guò)P(1,3)與Q(5,7)的直線上,且點(diǎn)A到點(diǎn)P與Q的“直角距離”之和等于8,那么滿足條件的點(diǎn)A只有5個(gè).
其中的真命題是
 
.(寫(xiě)出所有真命題的序號(hào))
考點(diǎn):命題的真假判斷與應(yīng)用,進(jìn)行簡(jiǎn)單的合情推理
專(zhuān)題:綜合題,簡(jiǎn)易邏輯,推理和證明
分析:先根據(jù)直角距離的定義分別表示出所求的問(wèn)題的表達(dá)式,然后根據(jù)集合中絕對(duì)值的性質(zhì)進(jìn)行判定即可.
解答: 解:①若P,Q是x軸上兩點(diǎn),則y1=y2=0,所以d(P,Q)=|x1-x2|,正確;
②已知P(1,3),Q(sin2a,cos2a)(a∈R),則d(P,Q)=|1-sin2a|+|3-cos2a|=cos2a+2+sin2a=3為定值,正確;
③設(shè)P(x,y),O(0,0),則d(0,P)=|x1-x2|+|y1-y2|=|x|+|y|=|x|+|x+1|,表示數(shù)軸上的x到1和0的距離之和,其最小值為1,故不正確;
④過(guò)P(1,3)與Q(5,7)的直線方程為y=x+2,點(diǎn)A到點(diǎn)P與Q的“直角距離”之和等于8,則|x-1|+|y-3|+|x-5|+|y-7|=2|x-1|+2|x-5|=8,所以|x-1|+|x-5|=4,所以1≤x≤5,因?yàn)閤∈Z,所以x=1,2,3,4,5,所以滿足條件的點(diǎn)A只有5個(gè),正確.
故答案為:①②④.
點(diǎn)評(píng):本題考查兩點(diǎn)之間的“直角距離”的定義,絕對(duì)值的意義,關(guān)鍵是明確P(x1,y1)、Q(x2,y2)兩點(diǎn)之間的“直角距離”的含義.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
lnx+a
x
(a∈R).
(Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間和極值;
(Ⅱ)當(dāng)a=1,且x≥1時(shí),證明:f(x)≤1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

復(fù)數(shù)
a-2i
1+2i
(i是虛數(shù)單位)是純虛數(shù),則實(shí)數(shù)a的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=
e-x(x≤0)
x
(x>0)
,g(x)=f(x)-
1
2
x-b
有且僅有一個(gè)零點(diǎn)時(shí),則b的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

△ABC中,sinB既是sinA,sinC的等差中項(xiàng),又是sinA,sinC的等比中項(xiàng),則∠B=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知p={x|y=
x+1
},Q={y|y=-x2+2x+1,x∈N},則P∩Q=( 。
A、{1,2}
B、{x|-1≤x≤2}
C、{0,1,2}
D、∅

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

認(rèn)真閱讀如圖所示程序框圖,則輸出的S等于( 。
A、14B、20C、30D、55

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)變量x,y滿足約束條件
x≥-1
y≥x
3x+2y≤10
,則z=2x+y的最大值為( 。
A、-3
B、
9
2
C、6
D、10

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在三棱錐P-ABC中,AB⊥AC,PA=PB=PC=3,AB=2
3
,AC=2.
(Ⅰ)求證:平面PBC⊥平面ABC;
(Ⅱ)求二面角A-PB-C的正切值.

查看答案和解析>>

同步練習(xí)冊(cè)答案