已知函數(shù)f(x)=x3-3ax+2(其中a為常數(shù))有極大值18.
(Ⅰ) 求a的值;
(Ⅱ)若曲線(xiàn)y=f(x)過(guò)原點(diǎn)的切線(xiàn)與函數(shù)g(x)=2bx2-7x-3-b在[-1,1]上的圖象有交點(diǎn),試求b的取值范圍.

解:(1)f′(x)=3x2-3a
若a<0則可得f′(x)≥0,不合題意
若a>0則

可得∴a=4
(II)設(shè)切點(diǎn)為(x0,y0)而f(x)=x3-12x+2
,則,故切線(xiàn)為y=-9x
由題意得,說(shuō)明函數(shù)h(x)=2bx2+2x-3-b在區(qū)間[-1,1]上有零點(diǎn)
若b=0,則函數(shù)h(x)=2x-3在[-1,1]上沒(méi)有零點(diǎn)
若a≠0,時(shí)分三種情況討論:
①方程h(x)=0在區(qū)間[-1,1]上有重根,此時(shí)△=4(2b2+6b+1)=0,解得
當(dāng)時(shí),h(x)=0的重根
當(dāng)時(shí),h(x)=0的重根∉[-1,1]
故當(dāng)方程h(x)=0在區(qū)間[-1,1]上有重根時(shí),b=
②h(x)在區(qū)間[-1,1]上只有一個(gè)零點(diǎn)且不是h(x)=0的重根
此時(shí)有h(-1)h(1)≤0∵h(yuǎn)(-1)=b-5,h(1)=b-1∴(b-5)(b-1)≤0?1≤b≤5
∵當(dāng)b=5時(shí),方程h(x)=0在區(qū)間[-1,1]上有兩個(gè)不同的實(shí)根
故當(dāng)方程h(x)=0在區(qū)間[-1,1]上只有一個(gè)根且不是重根時(shí),1≤b<5
③方程h(x)=0在區(qū)間[-1,1]有兩個(gè)不同的實(shí)根,則

綜上可得,b的取值范圍
分析:(I)先對(duì)函數(shù)求導(dǎo)f′(x)=3x2-3a,分a>0,f′(x)≥0,a>0則,討論函數(shù)的單調(diào)性,進(jìn)而求解函數(shù)的極值,從而可求a
(II)由題意可求切線(xiàn)方程y=-9x,由,在[-1,1]上的圖象有交點(diǎn),說(shuō)明函數(shù)得函數(shù)h(x)=2bx2+2x-3-b在區(qū)間[-1,1]上有零點(diǎn),利用方程的實(shí)根分別問(wèn)題進(jìn)行求解即可
點(diǎn)評(píng):本題主要考查了利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性及求解函數(shù)的極值,導(dǎo)數(shù)的幾何意義的應(yīng)用,解決本題的關(guān)鍵是靈活應(yīng)用方程的實(shí)根分布進(jìn)行求解.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知函數(shù)f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分圖象如圖所示,則f(x)的解析式是( 。
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•深圳一模)已知函數(shù)f(x)=
1
3
x3+bx2+cx+d
,設(shè)曲線(xiàn)y=f(x)在與x軸交點(diǎn)處的切線(xiàn)為y=4x-12,f′(x)為f(x)的導(dǎo)函數(shù),且滿(mǎn)足f′(2-x)=f′(x).
(1)求f(x);
(2)設(shè)g(x)=x
f′(x)
 , m>0
,求函數(shù)g(x)在[0,m]上的最大值;
(3)設(shè)h(x)=lnf′(x),若對(duì)一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011•上海模擬)已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當(dāng)a=1,b=2時(shí),求f(x)的最小值;
(2)若f(a)≥2m-1對(duì)任意0<a<b恒成立,求實(shí)數(shù)m的取值范圍;
(3)設(shè)k、c>0,當(dāng)a=k2,b=(k+c)2時(shí),記f(x)=f1(x);當(dāng)a=(k+c)2,b=(k+2c)2時(shí),記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:上海模擬 題型:解答題

已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當(dāng)a=1,b=2時(shí),求f(x)的最小值;
(2)若f(a)≥2m-1對(duì)任意0<a<b恒成立,求實(shí)數(shù)m的取值范圍;
(3)設(shè)k、c>0,當(dāng)a=k2,b=(k+c)2時(shí),記f(x)=f1(x);當(dāng)a=(k+c)2,b=(k+2c)2時(shí),記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:深圳一模 題型:解答題

已知函數(shù)f(x)=
1
3
x3+bx2+cx+d
,設(shè)曲線(xiàn)y=f(x)在與x軸交點(diǎn)處的切線(xiàn)為y=4x-12,f′(x)為f(x)的導(dǎo)函數(shù),且滿(mǎn)足f′(2-x)=f′(x).
(1)求f(x);
(2)設(shè)g(x)=x
f′(x)
 , m>0
,求函數(shù)g(x)在[0,m]上的最大值;
(3)設(shè)h(x)=lnf′(x),若對(duì)一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案