記數(shù)列{an}的前n項和為Sn,若是公差為d的等差數(shù)列,則{an}為等差數(shù)列的充要條件是d=   
【答案】分析:由于的首項為:,根據(jù)等差數(shù)列的通項公式得到:=1+(n-1)d算得a2=a1,同理算得a3=(a1+a1)×,由2a2=a1+a3可得公差d的值.
解答:解:由于的首項為:
=1+(n-1)d得:,算得a2=a1,同理算得a3=(a1+a1)×,
由2a2=a1+a3(a1不等于0)可得:2d2-3d+1=0,?d=1或d=1/2.
故答案為:1或
點評:本小題主要考查等差關(guān)系的確定、等差數(shù)列的通項公式、前n項和公式等基礎(chǔ)知識,考查運算求解能力與轉(zhuǎn)化思想.屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

記數(shù)列{an}的前n項和為Sn,且Sn=2n(n-1),則該數(shù)列是( 。
A、公比為2的等比數(shù)列
B、公比為
1
2
的等比數(shù)列
C、公差為2的等差數(shù)列
D、公差為4的等差數(shù)列

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}滿足a1=1,a2=4,an+2+2an=3an+1(n∈N*)
(1)求證:數(shù)列{an+1-an}是等比數(shù)列,并求{an}的通項公式;
(2)記數(shù)列{an}的前n項和Sn,求使得Sn>21-2n成立的最小整數(shù)n.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列{an}的項是由1或0構(gòu)成,且首項為1,在第k個1和第k+1個1之間有2k-1個0,即數(shù)列{an}為:1,0,1,0,0,0,1,0,0,0,0,0,1,…,記數(shù)列{an}的前n項和為Sn,則S2013=
45
45

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知無窮數(shù)列{an}中,a1,a2,…,am構(gòu)成首項為2,公差為-2的等差數(shù)列am+1,am+2,…,a2m,構(gòu)成首項為
1
2
,公比為
1
2
的等比數(shù)列,其中m≥3,m∈N+,
(l)當1≤n≤2m,n∈N+,時,求數(shù)列{an}的通項公式;
(2)若對任意的n∈N+,都有an+2m=an成立.
①當a27=
1
64
時,求m的值;
②記數(shù)列{an}的前n項和為Sn.判斷是否存在m,使得S4m+1≥2成立?若存在,求出m的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•閘北區(qū)一模)記數(shù)列{an}的前n項和為Sn,所有奇數(shù)項之和為S′,所有偶數(shù)項之和為S″.
(1)若{an}是等差數(shù)列,項數(shù)n為偶數(shù),首項a1=1,公差d=
3
2
,且S″-S′=15,求Sn;
(2)若{an}是等差數(shù)列,首項a1>0,公差d∈N*,且S′=36,S″=27,請寫出所有滿足條件的數(shù)列;
(3)若數(shù)列{an}的首項a1=1,滿足2tSn+1-3(t-1)Sn=2t(n∈N*),其中實常數(shù)t∈(
3
5
,3)
,且S-S=
5
2
,請寫出滿足上述條件常數(shù)t的兩個不同的值和它們所對應(yīng)的數(shù)列.

查看答案和解析>>

同步練習(xí)冊答案