分析 利用△PF1F2的面積為1,PF1⊥PF2,可得|PF1|•|PF2|=2,利用勾股定理,結(jié)合雙曲線的定義,即可求雙曲線的方程.
解答 解:由題意,c=$\sqrt{5}$,
因為△PF1F2的面積為1,PF1⊥PF2,
所以|PF1|•|PF2|=2,
又|PF1|2+|PF2|2=|F1F2|2=4c2=20,
從而(|PF1|-|PF2|)2=|PF1|2+|PF2|2-2|PF1|•|PF2|=20-4=16,即4a2=16,a=2,
所以b2=c2-a2=5-4=1,
所以雙曲線的方程為$\frac{{x}^{2}}{4}$-y2=1,
故答案為:$\frac{{x}^{2}}{4}$-y2=1.
點評 本題考查雙曲線的標(biāo)準(zhǔn)方程,考查勾股定理,考查學(xué)生的計算能力,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-$\frac{1}{2}$,-$\frac{\sqrt{3}}{4}$) | B. | (-$\frac{1}{2}$,-$\frac{\sqrt{3}}{4}$] | C. | [0,-$\frac{\sqrt{3}}{4}$] | D. | (-$\frac{2}{3}$,-$\frac{1}{2}$) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $\frac{2}{3}$ | C. | $\frac{3}{4}$ | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 11 | B. | 99 | C. | 120 | D. | 121 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com