已知命題b24ac0,則方程ax22bxc0a≠0)有兩個(gè)不相等的實(shí)數(shù)根,寫(xiě)出這個(gè)命題的逆命題,否命題及逆否命題,并指出它們的真假.

 

答案:
解析:

解:逆命題:若方程ax22bxc0有兩個(gè)不相等的實(shí)根,則b24ac0.真命題

否命題:若b24ac≤0,則方程ax22bxc0設(shè)有兩個(gè)不相等的實(shí)數(shù)根.真命題

逆否命題:若方程ax22bxc0沒(méi)有兩個(gè)不相等的實(shí)數(shù)根,則b24ac≤0.真命題

 


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給出以下三個(gè)命題:
(A)已知P(m,4)是橢圓
x2
a2
+
y2
b2
=1
(a>b>0)上的一點(diǎn),F(xiàn)1、F2是左、右兩個(gè)焦點(diǎn),若△PF1F2的內(nèi)切圓的半徑為
3
2
,則此橢圓的離心率e=
4
5
;
(B)過(guò)橢圓C:
x2
a2
+
y2
b2
=1
(a>b>0)上的任意一動(dòng)點(diǎn)M,引圓O:x2+y2=b2的兩條切線(xiàn)MA、MB,切點(diǎn)分別為A、B,若∠BMA=
π
2
,則橢圓的離心率e的取值范圍為[
3
2
,1)
;
(C)已知F1(-2,0)、F2(2,0),P是直線(xiàn)x=-1上一動(dòng)點(diǎn),則以F1、F2為焦點(diǎn)且過(guò)點(diǎn)P的雙曲線(xiàn)的離心率e的取值范圍是[2,+∞).
其中真命題的代號(hào)是
 
(寫(xiě)出所有真命題的代號(hào)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

現(xiàn)有下列命題:
①設(shè)a,b為正實(shí)數(shù),若a2-b2=1,則a-b<1;
②已知a>2b>0,則a2+
8
b(a-2b)
的最小值為16;
③數(shù)列{n(n+4)(
2
3
)n}中的最大項(xiàng)是第4項(xiàng)

④設(shè)函數(shù)f(x)=
lg|x-1|,x≠1
0,x=1
,則關(guān)于x的方程f2(x)+2f(x)=0有4個(gè)解.
⑤若sinx+siny=
1
3
,則siny-cos2x的最大值是
4
3

其中的真命題有
①②③
①②③
.(寫(xiě)出所有真命題的編號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列正確結(jié)論的序號(hào)是

①命題?x∈R,x2+x+1>0的否定是:?x∈R,x2+x+1<0.
②命題“若ab=0,則a=0,或b=0”的否命題是“若ab≠0,則a≠0且b≠0”.
③已知線(xiàn)性回歸方程是
y
=3+2x,則當(dāng)自變量的值為2時(shí),因變量的精確值為7.
④若a,b∈[0,1],則不等式a2+b2
1
4
成立的概率是
π
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011•邢臺(tái)一模)已知有下列四個(gè)命題:
①函數(shù)f(x)=2x-x2在(-∞,0)是增函數(shù);
②若f(x)在R上恒有f(x+2)•f(x)=1,則4為f(x)的一個(gè)周期;
③函數(shù)y=2cosx2+sin2x的最小值為
2
+1

④對(duì)任意實(shí)數(shù)a、b、x、y,都有ax+by≤
a2+b2
x2+y2
;
則以上命題正確的是
①②④
①②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•眉山二模)設(shè)a1≤a2≤…≤an,b1≤b2≤…≤bn為兩組實(shí)數(shù),c1,c2,…,cn是b1,b2,…,bn的任一排列,我們稱(chēng)S=a1c1+a2c2+a3c3+…+ancn為兩組實(shí)數(shù)的亂序和,S1=a1bn+a2bn-1+a3bn-2+…+anb1為反序和,S2=a1b1+a2b2+a3b3+…+anbn 為順序和.根據(jù)排序原理有:S1≤S≤S2即:反序和≤亂序和≤順序和.給出下列命題:
①數(shù)組(2,4,6,8)和(1,3,5,7)的反序和為60;
②若A=
x
2
1
+
x
2
2
+…+
x
2
n
,B=x1x2+x2x3+…+xn-1xn+xnx1其中x1,x2,…xn都是正數(shù),則A≤B;
③設(shè)正實(shí)數(shù)a1,a2,a3的任一排列為c1,c2,c3
a1
c1
+
a2
c2
+
a3
c3
的最小值為3;
④已知正實(shí)數(shù)x1,x2,…,xn滿(mǎn)足x1+x2+…+xn=P,P為定值,則F=
x
2
1
x2
+
x
2
2
x3
+…+
x
2
n-1
xn
+
x
2
n
x1
的最小值為
P
2

其中所有正確命題的序號(hào)為
①③
①③
.(把所有正確命題的序號(hào)都填上)

查看答案和解析>>

同步練習(xí)冊(cè)答案