15.已知$sin2θ-4sin({θ+\frac{π}{3}})sin({θ-\frac{π}{6}})=\frac{{\sqrt{3}}}{3}$,則cos2θ等于(  )
A.$\frac{1}{6}$B.$\frac{1}{3}$C.$-\frac{{\sqrt{3}}}{6}$D.$-\frac{{\sqrt{3}}}{3}$

分析 直接由三角函數(shù)的誘導(dǎo)公式化簡計(jì)算得答案.

解答 解:$sin2θ-4sin(θ+\frac{π}{3})sin(θ-\frac{π}{6})$=$sin2θ-4sin({θ-\frac{π}{6}})cos({θ-\frac{π}{6}})=sin2θ-2sin({2θ-\frac{π}{3}})=\sqrt{3}cos2θ=\frac{{\sqrt{3}}}{3}$,
即$cos2θ=\frac{1}{3}$.
故選:B.

點(diǎn)評(píng) 本題考查了三角函數(shù)的化簡求值,考查了三角函數(shù)的誘導(dǎo)公式的應(yīng)用,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.不等式ax2+bx+c<0的解集為空集,則( 。
A.a<0,△>0B.a<0,△≥0C.a>0,△≤0D.a>0,△≥0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)$f(x)=Asin(ωx+ϕ)(A>0,ω>0,|ϕ|<\frac{π}{2})$的部分圖象如圖所示.
(1)求函數(shù)f(x)的解析式;
(2)求函數(shù)g(x)=lg[f(x)-1]的定義域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知sin(3π+α)=2sin$({\frac{3π}{2}+α})$,求下列各式的值:
(1)$\frac{2sinα-3cosα}{4sinα-9cosα}$;
(2)sin2α+sin 2α.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.長方體ABCD-A1B1C1D1中,若A1C與平面AB1D1相交于點(diǎn)M,則$\frac{{{A_1}M}}{{{A_1}C}}$=$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.如圖,在四棱錐P-ABCD中,PC⊥底面ABCD,底面ABCD是矩形,BC=PC,E,F(xiàn)分別是PA,PB的中點(diǎn).
(1)求證:PB⊥平面CDF;
(2)已知點(diǎn)M是AD的中點(diǎn),點(diǎn)N是AC上一動(dòng)點(diǎn),當(dāng)$\frac{CN}{AC}$為何值時(shí),平面PDN∥平面BEM?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.下列命題正確的是( 。
A.若a2>b2,則a>bB.若ac>bc,則a>bC.若$\frac{1}{a}>\frac{1},則a<b$D.若$\sqrt{a}<\sqrt,則a<b$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.如圖,已知平面ABC⊥平面BCDE,△DEF與△ABC分別是棱長為1與2的正三角形,AC∥DF,四邊形BCDE為直角梯形,DE∥BC,BC⊥CD,CD=1,點(diǎn)G為△ABC的重心,N為AB中點(diǎn),$\overrightarrow{AM}=λ\overrightarrow{AF}(λ∈R,λ>0)$.
(1)當(dāng)$λ=\frac{2}{3}$時(shí),求證:GM∥平面DFN;
(2)若$λ=\frac{1}{2}$時(shí),試求二面角M-BC-D的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.過點(diǎn)C(3,4)作圓x2+y2=5的兩條切線,切點(diǎn)分別為A、B,則點(diǎn)C到直線AB的距離為2.

查看答案和解析>>

同步練習(xí)冊(cè)答案