7.如圖,邊長為a的正方形最長的網(wǎng)格中,設(shè)橢圓C1,C2,C3的離心率分別為e1,e2,e3,則(  )
A.e1=e2<e3B.e1<e2=e3C.e1=e2>e3D.e2=e3<e1

分析 根據(jù)圖形,利用橢圓的離心率計(jì)算公式即可得出結(jié)論.

解答 解:先看橢圓C1,長軸2a1=4a,短軸2b1∈(2a,4a),
∴離心率e1=$\frac{{c}_{1}}{{a}_{1}}$=$\sqrt{1-(\frac{_{1}}{{a}_{1}})^{2}}$∈(0,$\frac{\sqrt{3}}{2}$).
橢圓C2,長軸2a1=8a,短軸2b2=4a,
∴離心率e2=$\frac{{c}_{2}}{{a}_{2}}$=$\sqrt{1-(\frac{_{2}}{{a}_{2}})^{2}}$=$\frac{\sqrt{3}}{2}$.
同理可得橢圓C3的離心率e3=$\frac{\sqrt{3}}{2}$.
∴e1、e2、e3的關(guān)系為e1<e2=e3
故選:B.

點(diǎn)評(píng) 本題考查了橢圓的標(biāo)準(zhǔn)方程及其性質(zhì),考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知不等式(ax+2)•ln(x+a)≤0對(duì)x∈(-a,+∞)恒成立,則a的值為-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.甲、乙兩人在一座9層大樓的地層進(jìn)入電梯,若每個(gè)人直第二層開始在第一層離開電梯是等可能的,則2個(gè)人在不同樓層離開的概率是(  )
A.$\frac{1}{2}$B.$\frac{5}{6}$C.$\frac{8}{9}$D.$\frac{7}{8}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知圓C關(guān)于y軸對(duì)稱,經(jīng)過拋物線y2=4x的焦點(diǎn),且被直線y=x分成兩段弧長之比為1:2
(Ⅰ)求圓C的方程
(Ⅱ)若圓C的圓心在x軸下方,過點(diǎn)P(-1,2)作直線l與圓C相切,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知橢圓$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的左焦點(diǎn)為F,橢圓C與過原點(diǎn)的直線相交于A,B兩點(diǎn),連接AF,BF,若|AB|=10,|AF|=6,∠AFB=90°,則C的離心率e=$\frac{5}{7}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.根據(jù)下列條件,求圓的方程:
(1)圓心在直線y=-4x上,且與直線l:x+y-1=0相切與點(diǎn)P(3,-2);
(2)已知圓和y軸相切,圓心在直線x-3y=0上,且被直線y=x解得弦長為$2\sqrt{7}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.在四棱錐P-ABCD中,△PAB為正三角形,四邊形ABCD為矩形,平面PAB⊥平面ABCD,AB=2AD,M,N分別為PB,PC中點(diǎn).
(Ⅰ)求證:MN∥平面PAD;
(Ⅱ)求二面角B-AM-C的大;
(Ⅲ)在BC上是否存在點(diǎn)E,使得EN⊥平面AMN?若存在,求$\frac{BE}{BC}$的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.“x+y=3”是“x=1且y=2”的( 。
A.充分不必要條件B.必要不充分條件
C.充分必要條件D.既不充分也必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.執(zhí)行如圖所示的程序框圖,則輸出S的值是(  )
A.10B.12C.100D.102

查看答案和解析>>

同步練習(xí)冊(cè)答案