已知定義在R上的函數(shù)y=f(x)為奇函數(shù),且y=f(x+1)為偶函數(shù),f(1)=1,則f(3)+f(4)=   
【答案】分析:根據(jù)y=f(x+1)為偶函數(shù)得f(-x+1)=f(x+1),然后根據(jù)奇函數(shù)的性質(zhì)和賦值法求出f(3)與f(4)的值即可.
解答:解:∵y=f(x+1)為偶函數(shù)
∴f(-x+1)=f(x+1)
令x=2得f(3)=f(-2+1)=f(-1)=-f(1)=-1
∵定義在R上的函數(shù)y=f(x)為奇函數(shù)
∴f(0)=0
令x=1得f(2)=f(-1+1)=f(0)=0
令x=3得f(4)=f(-3+1)=f(-2)=-f(2)=0
∴f(3)+f(4)=-1+0=-1
故答案為:-1
點(diǎn)評(píng):本題主要考查了抽象函數(shù)的性質(zhì),以及函數(shù)奇偶性和函數(shù)求值,同時(shí)考查了轉(zhuǎn)化的思想,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知定義在R上的函數(shù)y=f(x)滿(mǎn)足下列條件:
①對(duì)任意的x∈R都有f(x+2)=f(x);
②若0≤x1<x2≤1,都有f(x1)>f(x2);
③y=f(x+1)是偶函數(shù),
則下列不等式中正確的是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知定義在R上的函數(shù)f(x)滿(mǎn)足:f(x)=
f(x-1)-f(x-2),x>0
log2(1-x),       x≤0
  則:
①f(3)的值為
0
0

②f(2011)的值為
-1
-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知定義在R上的函數(shù)f(x)滿(mǎn)足f(x+1)=-f(x),且x∈(-1,1]時(shí)f(x)=
1,(-1<x≤0)
-1,(0<x≤1)
,則f(3)=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知定義在R上的函數(shù)f(x)是偶函數(shù),對(duì)x∈R都有f(2+x)=f(2-x),當(dāng)f(-3)=-2時(shí),f(2013)的值為( 。
A、-2B、2C、4D、-4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知定義在R上的函數(shù)f(x),對(duì)任意x∈R,都有f(x+6)=f(x)+f(3)成立,若函數(shù)y=f(x+1)的圖象關(guān)于直線(xiàn)x=-1對(duì)稱(chēng),則f(2013)=( 。
A、0B、2013C、3D、-2013

查看答案和解析>>

同步練習(xí)冊(cè)答案