精英家教網 > 高中數學 > 題目詳情

【題目】一網站營銷部為統(tǒng)計某市網友2017年12月12日在某網店的網購情況,隨機抽查了該市60名網友在該網店的網購金額情況,如下表:

網購金額(單位:千元)

頻數

頻率

網購金額(單位:千元)

頻數

頻率

[0,0.5)

3

0.05

[1.5,2)

15

0.25

[0.5,1)

[2,2.5)

18

0.30

[1,1.5)

9

0.15

[2.5,3]

若將當日網購金額不小于2千元的網友稱為“網購達人”,網購金額小于2千元的網友稱為“網購探者”,已知“網購達人”與“網購探者”人數的比例為2:3.

(1)確定,,的值,并補全頻率分布直方圖;

(2)①.試根據頻率分布直方圖估算這60名網友當日在該網店網購金額的平均數和中位數;

②.若平均數和中位數至少有一個不低于2千元,則該網店當日評為“皇冠店”,試判斷該網店當日能否被評為“皇冠店”.

【答案】(1)見解析; (2)根據估算判斷,該網店當日不能被評為“皇冠店”..

【解析】

(1)由題意,根據頻率分布直方表中的數據,列出方程,求得,,進而求得的值,即可求解;

(2)①由平均數的計算公式和中位數公式,即可求得這60名網友的網購金額的平均數為和中位數;

②根據數據平均數,中位數,即可得到結論.

(1)由題意,得 ,化簡,得,

解得,∴.

補全的頻率分布直方圖如圖所示:

(2)①設這60名網友的網購金額的平均數為.

(千元)

又∵.

∴這60名網友的網購金額的中位數為(千元),

②∵平均數 ,中位數,

∴根據估算判斷,該網店當日不能被評為“皇冠店”.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】2016年美國總統(tǒng)大選過后,有媒體從某公司的全體員工中隨機抽取了200人,對他們的投票結果進行了統(tǒng)計(不考慮棄權等其他情況),發(fā)現支持希拉里的一共有95人,其中女員工55人,支持特朗普的男員工有60人.
(Ⅰ)根據已知條件完成下面的2×2列聯表:據此材料,是否有95%的把握認為投票結果與性別有關?

支持希拉里

支持特朗普

合計

男員工

女員工

合計

(Ⅱ)若從該公司的所有男員工中隨機抽取3人,記其中支持特朗普的人數為X,求隨機變量X的分布列和數學期望.(用相應的頻率估計概率)
附:

P(K2≥k0

0.15

0.10

0.05

0.025

0.010

0.005

0.001

K0

2.072

2.706

3.841

5.024

6.635

7.879

10.828

(參考公式:K2= ,其中n=a+b+c+d)

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設函數f(x)=|2x﹣7|+1.
(1)求不等式f(x)≤x的解集;
(2)若存在x使不等式f(x)﹣2|x﹣1|≤a成立,求實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖所示,已知四棱錐PABCD,底面ABCD為菱形,PA平面ABCD,ABC=60°,E,F分別是BC,PC的中點.

(1)證明:AEPD;

(2)HPD上的動點,EH與平面PAD所成最大角的正切值為,

求二面角EAFC的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在五面體ABCDPN中,棱PA⊥面ABCD,AB=AP=2PN,底面ABCD是菱形,∠BAD=

(1)求證:PN∥AB;

(2)求NC與平面BDN所成角的正弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,四棱錐中,底面為平行四邊形.底面 .

(I)證明:

(II)設,求棱錐的高.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖四面體ABCD中,△ABC是正三角形,AD=CD.(12分)
(1)證明:AC⊥BD;
(2)已知△ACD是直角三角形,AB=BD,若E為棱BD上與D不重合的點,且AE⊥EC,求四面體ABCE與四面體ACDE的體積比.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數

Ⅰ)求函數的最小值和最小正周期;

Ⅱ)已知內角的對邊分別為,且,若向量共線,求的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設{an}是等比數列,則下列結論中正確的是( )

A. 若a1=1,a5=4,則a3=﹣2

B. 若a1+a3>0,則a2+a4>0

C. 若a2>a1,則a3>a2

D. 若a2>a1>0,則a1+a3>2a2

查看答案和解析>>

同步練習冊答案