【題目】如圖所示,在直三棱柱中,,,

(1)證明: 平面;

(2)若是棱的中點(diǎn),在棱上是否存在一點(diǎn),使DE∥平面?證明你的結(jié)論.

【答案】(1)見解析;(2)見解析

【解析】

(1)利用直棱柱的性質(zhì)、正方形的性質(zhì)、線面垂直的判定和性質(zhì)定理即可證明;

(2)利用三角形的中位線定理、線面和面面平行的判定和性質(zhì)定理即可證明.

證明:(1)∵,∴

∵三棱柱為直三棱柱,∴

,∴平面

平面,∴

∵BC∥B1C1,∥則

中,,,∴

,∴四邊形為正方形.

,∴ 平面

(2)當(dāng)點(diǎn)為棱的中點(diǎn)時(shí),平面

證明如下:如圖,取的中點(diǎn),連、、,

、分別為、、的中點(diǎn),

∴EF∥AB1

平面,平面,

∴EF∥平面,同理可證FD∥平面

,∴平面∥平面

平面,

∴DE∥平面

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)A(0,﹣2),橢圓E: =1(a>b>0)的離心率為 ,F(xiàn)是橢圓的焦點(diǎn),直線AF的斜率為 ,O為坐標(biāo)原點(diǎn).
(Ⅰ)求E的方程;
(Ⅱ)設(shè)過點(diǎn)A的直線l與E相交于P,Q兩點(diǎn),當(dāng)△OPQ的面積最大時(shí),求l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下圖是根據(jù)調(diào)查結(jié)果繪制的兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)你根據(jù)統(tǒng)計(jì)圖提供的信息解答以下問題:

(1)本次一共調(diào)查了多少名學(xué)生.(2)在圖(1)中將對(duì)應(yīng)的部分補(bǔ)充完整.

(3)若該校有3 000名學(xué)生,你估計(jì)全校有多少名學(xué)生平均每天參加體育活動(dòng)的時(shí)間在0.5時(shí)以下?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某商品一年內(nèi)出廠價(jià)格在6元的基礎(chǔ)上按月份隨正弦曲線波動(dòng),已知3月份達(dá)到最高價(jià)格8元,7月份價(jià)格最低為4元,該商品在商店內(nèi)的銷售價(jià)格在8元基礎(chǔ)上按月份隨正弦曲線波動(dòng),5月份銷售價(jià)格最高為10元,9月份銷售價(jià)最低為6元,假設(shè)商店每月購進(jìn)這種商品m件,且當(dāng)月銷完,你估計(jì)哪個(gè)月份盈利最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),函數(shù),若的圖象上相鄰兩條對(duì)稱軸的距離為,圖象過點(diǎn).

(1)求表達(dá)式和的單調(diào)增區(qū)間;

(2)將函數(shù)的圖象向右平移個(gè)單位,再將圖象上各點(diǎn)的橫坐標(biāo)伸長到原來的2倍(縱坐標(biāo)不變),得到函數(shù)的圖象,若函數(shù)在區(qū)間上有且只有一個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,上海迪士尼樂園將一三角形地塊ABC的一角APQ開辟為游客體驗(yàn)活動(dòng)區(qū).已知∠A=120°,AB、AC的長度均大于200米.設(shè)AP=x,AQ=y,且AP,AQ總長度為200米.

(1)當(dāng)x,y為何值時(shí)?游客體驗(yàn)活動(dòng)區(qū)APQ的面積最大,并求最大面積;
(2)當(dāng)x,y為何值時(shí)?線段|PQ|最小,并求最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定義在R上的函數(shù),其中a為常數(shù).

I)若x=1是函數(shù)的一個(gè)極值點(diǎn),求a的值

II)若函數(shù)在區(qū)間(-1,0)上是增函數(shù),求a的取值范圍

III)若函數(shù),在x=0處取得最大值,求正數(shù)a的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某商場(chǎng)對(duì)顧客實(shí)行購物優(yōu)惠活動(dòng),規(guī)定一次購物付款總額:

(1)如果不超過200元,則不給予優(yōu)惠;

(2)如果超過200元但不超過500元,則按標(biāo)價(jià)給予9折優(yōu)惠;

(3)如果超過500元,其500元內(nèi)的按第(2)條給予優(yōu)惠,超過500元的部分給予7折優(yōu)惠.

某人單獨(dú)購買AB商品分別付款168元和423元,假設(shè)他一次性購買A,B兩件商品,則應(yīng)付款是

A. 413.7B. 513.7C. 546.6D. 548.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知等差數(shù)列和等比數(shù)列滿足, ,

1的通項(xiàng)公式;

2求和:

【答案】1;(2

【解析】試題分析:(1)根據(jù)等差數(shù)列, 列出關(guān)于首項(xiàng)、公差的方程組,解方程組可得的值,從而可得數(shù)列的通項(xiàng)公式;(2)利用已知條件根據(jù)題意列出關(guān)于首項(xiàng) ,公比 的方程組,解得、的值,求出數(shù)列的通項(xiàng)公式,然后利用等比數(shù)列求和公式求解即可.

試題解析:(1)設(shè)等差數(shù)列{an}的公差為d. 因?yàn)?/span>a2+a4=10,所以2a1+4d=10.解得d=2.

所以an=2n1.

(2)設(shè)等比數(shù)列的公比為q. 因?yàn)?/span>b2b4=a5,所以b1qb1q3=9.

解得q2=3.所以.

從而.

型】解答
結(jié)束】
18

【題目】已知命題:實(shí)數(shù)滿足,其中;命題:方程表示雙曲線.

(1)若,且為真,求實(shí)數(shù)的取值范圍;

(2)若的充分不必要條件,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案