(本小題滿分14分)
如圖,設(shè)點、分別是橢圓的左、右焦點,為橢圓上任意一點,且最小值為

(1)求橢圓的方程;
(2)若動直線均與橢圓相切,且,試探究在軸上是否存在定點,點的距離之積恒為1?若存在,請求出點坐標(biāo);若不存在,請說明理由.

(1)(2)存在定點滿足要求

解析試題分析:(1)設(shè),則有,         ……1分
                   ……2分
最小值為,                    ……3分
∴橢圓的方程為.                                         ……4分
(2)①當(dāng)直線斜率存在時,設(shè)其方程為            ……5分
的方程代入橢圓方程得
∵直線與橢圓相切,∴,
化簡得                                                     ……7分
同理,                                                     ……8分
,若,則重合,不合題意,∴                  ……9分
設(shè)在軸上存在點,點到直線的距離之積為1,
,即,                         ……10分
代入并去絕對值整理,
或者
前式顯然不恒成立;而要使得后式對任意的恒成立
,解得;                                             ……12分
②當(dāng)直線斜率不存在時,其方程為,                ……13分
定點到直線的距離之積為;
定點到直線的距離之積為;
綜上所述,滿足題意的定點                           ……14分
考點:本小題主要考查橢圓的標(biāo)準(zhǔn)方程,橢圓的性質(zhì)和直線與橢圓的位置關(guān)系.
點評:每年高考都會考查圓錐曲線問題

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,已知拋物線的焦點在拋物線上,點是拋物線上的動點.

(Ⅰ)求拋物線的方程及其準(zhǔn)線方程;
(Ⅱ)過點作拋物線的兩條切線,、分別為兩個切點,設(shè)點到直線的距離為,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知中心在坐標(biāo)原點,焦點在軸上的橢圓過點,且它的離心率.

(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)與圓相切的直線交橢圓于兩點,若橢圓上一點滿足,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知點軸上的動點,點軸上的動點,點為定點,且滿足,.
(Ⅰ)求動點的軌跡的方程;
(Ⅱ)過點且斜率為的直線與曲線交于兩點,,試判斷在軸上是否存在點,使得成立,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)
已知橢圓左、右焦點分別為F1、F2,點,點F2在線段PF1的中垂線上。
(1)求橢圓C的方程;
(2)設(shè)直線與橢圓C交于M、N兩點,直線F2M與F2N的傾斜角互補,求證:直線過定點,并求該定點的坐標(biāo)。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分13分)
已知橢圓的右焦點為F,離心率,橢圓C上的點到F的距離的最大值為,直線l過點F與橢圓C交于不同的兩點A、B.
(1) 求橢圓C的方程;
(2) 若,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)
已知橢圓的右焦點,且,設(shè)短軸的一個端點為,原點到直線的距離為,過原點和軸不重合的直線與橢圓相交于兩點,且.
(1)求橢圓的方程;
(2)是否存在過點的直線與橢圓相交于不同的兩點,且使得成立?若存在,試求出直線的方程;若不存在,請說明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)已知橢圓的中心在坐標(biāo)原點O,長軸長為2,離心率e=,過右焦點F的直線l交橢圓于P、Q兩點.
(Ⅰ)求橢圓的方程;
(Ⅱ)若OP、OQ為鄰邊的平行四邊形是矩形,求滿足該條件的直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本大題滿分14分)
已知△的兩個頂點的坐標(biāo)分別是,,且所在直線的斜率之積等于
(Ⅰ)求頂點的軌跡的方程,并判斷軌跡為何種圓錐曲線;
(Ⅱ)當(dāng)時,過點的直線交曲線兩點,設(shè)點關(guān)于軸的對稱點為(不重合).求證直線軸的交點為定點,并求出該定點的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案