【題目】已知圓,直線,若直線上存在點(diǎn),過點(diǎn)引圓的兩條切線,使得,則實(shí)數(shù)的取值范圍是( )
A. B. [,]
C. D. )
【答案】D
【解析】
由題意結(jié)合幾何性質(zhì)可知點(diǎn)P的軌跡方程為,則原問題轉(zhuǎn)化為圓心到直線的距離小于等于半徑,據(jù)此求解關(guān)于k的不等式即可求得實(shí)數(shù)k的取值范圍.
圓C(2,0),半徑r=,設(shè)P(x,y),
因?yàn)閮汕芯,如下圖,PA⊥PB,由切線性質(zhì)定理,知:
PA⊥AC,PB⊥BC,PA=PB,所以,四邊形PACB為正方形,所以,|PC|=2,
則:,即點(diǎn)P的軌跡是以(2,0)為圓心,2為半徑的圓.
直線過定點(diǎn)(0,-2),直線方程即,
只要直線與P點(diǎn)的軌跡(圓)有交點(diǎn)即可,即大圓的圓心到直線的距離小于等于半徑,
即:,解得:,
即實(shí)數(shù)的取值范圍是).
本題選擇D選項(xiàng).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某火鍋店為了了解氣溫對(duì)營業(yè)額的影響,隨機(jī)記錄了該店1月份其中5天的日營業(yè)額y(單位:萬元)與該地當(dāng)日最低氣溫x(單位:℃)的數(shù)據(jù),如下表:
(1)求y關(guān)于x的線性回歸方程=x+;
(2)判斷y與x之間是正相關(guān)還是負(fù)相關(guān),若該地1月份某天的最低氣溫為6 ℃,用所求回歸方程預(yù)測該店當(dāng)日的營業(yè)額;
(3)設(shè)該地1月份的日最低氣溫X~N(μ,σ2),其中μ近似為樣本平均數(shù),σ2近似為樣本方差s2,求P(3.8<X≤13.4).
附:①回歸方程中,=,=﹣.
②≈3.2,≈1.8.若X~N(μ,σ2),則P(μ-σ<X≤μ+σ)=0.682 7,P(μ-2σ<X≤μ+2σ)=0.954 5.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在航天員進(jìn)行的一項(xiàng)太空實(shí)驗(yàn)中,要先后實(shí)施6個(gè)程序,其中程序只能出現(xiàn)在第一步或最后一步,程序實(shí)施時(shí)必須相鄰,請(qǐng)問實(shí)驗(yàn)順序的編排方法共有 ( )
A. 種 B. 種 C. 種 D. 種
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底面ABCD為平行四邊形,PA⊥底面ABCD,,,,.
(1)求證:平面PCA⊥平面PCD;
(2)設(shè)E為側(cè)棱PC上的一點(diǎn),若直線BE與底面ABCD所成的角為45°,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線的焦點(diǎn)為 ,過點(diǎn)且斜率為的直線交曲線于兩點(diǎn),交圓于兩點(diǎn)(兩點(diǎn)相鄰).
(Ⅰ)若,當(dāng)時(shí),求的取值范圍;
(Ⅱ)過兩點(diǎn)分別作曲線的切線,兩切線交于點(diǎn),求與面積之積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,橢圓經(jīng)過點(diǎn),離心率為. 已知過點(diǎn)的直線與橢圓交于兩點(diǎn).
(1)求橢圓的方程;
(2)試問軸上是否存在定點(diǎn),使得為定值.若存在,求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底面為邊長為2的菱形,,,面面,點(diǎn)為棱的中點(diǎn).
(1)在棱上是否存在一點(diǎn),使得面,并說明理由;
(2)當(dāng)二面角的余弦值為時(shí),求直線與平面所成的角.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為’(為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為.
(1)求和的直角坐標(biāo)方程;
(2)已知直線與軸交于點(diǎn),且與曲線交于,兩點(diǎn),求的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com