考點(diǎn):數(shù)列的求和,等差數(shù)列的性質(zhì)
專(zhuān)題:綜合題,等差數(shù)列與等比數(shù)列
分析:(Ⅰ)根據(jù)1,an,Sn成等差數(shù)列,建立條件關(guān)系,利用構(gòu)造法進(jìn)行化簡(jiǎn),由此能求出an.
(Ⅱ)確定數(shù)列的通項(xiàng),利用裂項(xiàng)法求和,即可證明結(jié)論.
解答:
(Ⅰ)解:∵1,a
n,S
n成等差數(shù)列,
∴2a
n=S
n+1,
當(dāng)n=1時(shí),2a
1=a
1+1,∴a
1=1,
當(dāng)n≥2時(shí),S
n=2a
n-1,S
n-1=2a
n-1-1,
兩式相減得a
n=2a
n-2a
n-1,
即a
n=2a
n-1,
∴數(shù)列{a
n}是以1為首項(xiàng),2為公比的等比數(shù)列,
∴a
n=a
1•2
n-1=1•2
n-1=2
n-1.
(Ⅱ)證明:b
n=(log
2a
n+1)(log
2a
n+2)=n(n+1),
∴
=
=
-
,
∴
+
+
+…+
=1-
+
-
+…+
-
=1-
<1.
點(diǎn)評(píng):本題主要考查等差數(shù)列和等比數(shù)列的應(yīng)用,考查裂項(xiàng)法求和,要求熟練掌握相應(yīng)的公式,考查學(xué)生的計(jì)算能力.