【題目】如圖1,在三角形中,為其中位線,且,若沿將三角形折起,使,構(gòu)成四棱錐,且

1求證:平面 平面;

2當(dāng) 異面直線所成的角為時(shí),求折起的角度

答案】1證明見(jiàn)解析;2

【解析】

試題分析:1可先證從而得到平面,再證,可得平面,由,可證明平面平面;2,取的中點(diǎn),連接,可得即為異面直線所成的角或其補(bǔ)角,即為所折起的角度在三角形中求角即可

試題解析:

1因?yàn)?/span>,所以,

因?yàn)?/span>,中點(diǎn),,所以,所以四邊形為平行四邊形,所以,

,,又,所以平面,

因?yàn)?/span>,所以平面,又因?yàn)?/span>平面,平面,

所以,又因?yàn)樵谄矫?/span>中,三角形的中位線,于是

因?yàn)樵谄矫?/span>中,,于是,

因?yàn)?/span>平面,平面,所以平面,

又因?yàn)?/span>,所以平面平面

2因?yàn)?/span>,取的中點(diǎn),連接,所以,,又,,所以,,從而四邊形為平行四邊形,所以,得;同時(shí),因?yàn)?/span>,所以,故折起的角度

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】學(xué)校舉辦運(yùn)動(dòng)會(huì)時(shí),高一(1)班有28名同學(xué)參加比賽,有15人參加游泳比賽,有8人參加田徑比賽,有14人參加球類比賽,同時(shí)參加游泳和田徑比賽的有3人,同時(shí)參加游泳和球類比賽的有3人,沒(méi)有人同時(shí)參加三項(xiàng)比賽.則同時(shí)參加田徑和球類比賽的人數(shù)是( ).

A.3B.4C.5D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某公司今年年初用25萬(wàn)元引進(jìn)一種新的設(shè)備,投入設(shè)備后每年收益為21萬(wàn)元.該公司第年需要付出設(shè)備的維修和工人工資等費(fèi)用的信息如下圖 .

(1;

(2引進(jìn)這種設(shè)備后,第幾年后該公司開(kāi)始獲利;

(3這種設(shè)備使用多少年,該公司的年平均獲利最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】

已知函數(shù)是定義在上的奇函數(shù),且

(1)求實(shí)數(shù)的值;

(2)判斷函數(shù)的單調(diào)性,并用定義證明;

(3)解不等式:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某公司過(guò)去五個(gè)月的廣告費(fèi)支出與銷售額(單位:萬(wàn)元)之間有下列對(duì)應(yīng)數(shù)據(jù):


2

4

5

6

8



40

60

50

70

工作人員不慎將表格中的第一個(gè)數(shù)據(jù)丟失.已知對(duì)呈線性相關(guān)關(guān)系,且回歸方程為,則下列說(shuō)法:銷售額與廣告費(fèi)支出正相關(guān);丟失的數(shù)據(jù)(表中處)為30該公司廣告費(fèi)支出每增加1萬(wàn)元,銷售額一定增加萬(wàn)元;若該公司下月廣告投入8萬(wàn)元,則銷售

額為70萬(wàn)元.其中,正確說(shuō)法有( )

A1個(gè) B2個(gè) C3個(gè) D4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】一條直線和三角形的兩邊同時(shí)垂直,則這條直線和三角形的第三邊的位置關(guān)系是(

A.平行B.垂直C.相交不垂直D.不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn), 軸的非負(fù)半軸為極軸建立極坐標(biāo)系.已知點(diǎn)的極坐標(biāo)為,曲線的參數(shù)方程為為參數(shù)).

(1)直線過(guò)且與曲線相切,求直線的極坐標(biāo)方程;

(2)點(diǎn)與點(diǎn)關(guān)于軸對(duì)稱,求曲線上的點(diǎn)到點(diǎn)的距離的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,已知圓C:(x﹣2)2+(y+1)2=5,過(guò)點(diǎn)P(5,0)且斜率為k的直線與圓C相交于不同的兩點(diǎn)A,B.

(I)求k的取值范圍;

(Ⅱ)若弦長(zhǎng)|AB|=4,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在復(fù)平面內(nèi),復(fù)數(shù)3-4i,i(2+i)對(duì)應(yīng)的點(diǎn)分別是A,B,則線段AB的中點(diǎn)C對(duì)應(yīng)的復(fù)數(shù)為(  )

A.-2+2iB.2-2i

C.-1+iD.1-i

查看答案和解析>>

同步練習(xí)冊(cè)答案