已知0<a<,0<b<. 試求角的值.

 

答案:
解析:

  :由題設(shè)等式,有,                           

                                                  

  由1 2,得,

  整理得

  (舍去)

  由于0<a<

  

  評注:對含有兩個角的三函數(shù)式的求角(或值)的問題,借助于方程的觀點(diǎn)及三角消元,是求角這類問題的常規(guī)方法.

 


提示:

  分析:從表面上看,題設(shè)等式較復(fù)雜,與求的值有較大的差距,但只要細(xì)心觀察,便也不難發(fā)現(xiàn),只要消去等式中的角,就能求出角a的值.

 


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(08年上虞市質(zhì)檢一理)已知橢圓C1 (0<a<,0<b<2)與橢圓C2有相同的焦點(diǎn). 直線L:y=k(x+1)與兩個橢圓的四個交點(diǎn),自上而下順次記為A、B、C、D.

(I)求線段BC的長(用k和a表示);

(II)是否存在這樣的直線L,使線段AB、BC、CD的長按此順序構(gòu)成一個等差數(shù)列.請說明詳細(xì)的理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年山西長治二中等四校高三第四次聯(lián)考理科數(shù)學(xué)試卷(解析版) 題型:解答題

以直角坐標(biāo)系的原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸,且兩個坐標(biāo)系取相等的長度單位.已知直線的參數(shù)方程為 (t為參數(shù),0<a<),曲線C的極坐標(biāo)方程為

(I)求曲線C的直角坐標(biāo)方程;

(II)設(shè)直線l與曲線C相交于A、B兩點(diǎn),當(dāng)a變化時,求|AB|的最小值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年山西長治二中等四校高三第四次聯(lián)考文科數(shù)學(xué)試卷(解析版) 題型:解答題

以直角坐標(biāo)系的原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸,且兩個坐標(biāo)系取相等的長度單位.已知直線的參數(shù)方程為 (t為參數(shù),0<a<),曲線C的極坐標(biāo)方程為

(1)求曲線C的直角坐標(biāo)方程;

(2)設(shè)直線l與曲線C相交于A、B兩點(diǎn),當(dāng)a變化時,求|AB|的最小值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知0< k <4直線L:kx-2y-2k+8=0和直線M:2x+k2y-4k2-4=0與兩坐標(biāo)軸圍成一個四邊形,則這個四邊形面積最小值時k值為                           (    )

A.2                  B.              C.               D.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:湖北省麻城一中09-10學(xué)年高二上學(xué)期9月月考(理) 題型:選擇題

 已知0< k <4直線L:kx-2y-2k+8=0和直線M:2x+k2y-4k2-4=0與兩坐標(biāo)軸圍成一個四邊形,則這個四邊形面積最小值時k值為                           (    )

A.2                  B.              C.               D.

 

查看答案和解析>>

同步練習(xí)冊答案