(本小題滿分10分)如圖,在四棱錐S—ABCD中,側(cè)棱SA=SB=SC=SD,底面ABCD是菱形,AC與BD交于O點.
(Ⅰ)求證:AC⊥平面SBD;
(Ⅱ)若E為BC中點,點P在側(cè)面△SCD內(nèi)及其邊界上運動,并保持PE⊥AC,試指出動點P的軌跡,并證明你的結(jié)論.
(1)證明:∵底面ABCD是菱形,O為中心,
∴AC⊥BD.又SA=SC,∴AC⊥SO.而SO∩BD=O,∴AC⊥面SBD.-----5分
(2)解:取棱SC中點M,CD中點N,連結(jié)MN,則動點P的軌跡即是線段MN.
證明:連結(jié)EM、EN,∵E是BC的中點,M是SC的中點,
∴EM∥SB.同理,EN∥BD,∴平面EMN∥平面SBD,
∵AC⊥平面SBD,∴AC⊥平面EMN.
因此,當(dāng)點P在線段MN上運動時,總有AC⊥EP;
P點不在線段MN上時,不可能有AC⊥EP.------5分
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

棱錐被平行于底面的平面所截,當(dāng)截面分別平分棱錐的側(cè)棱、側(cè)面積、體積時,相應(yīng)的截面面積分別為S1、S2、S3,則(   )
A.S1<S2<S3B.S3<S2<S1C.S2<S1<S3D.S1<S3<S2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

三條直線兩兩平行,則可以確定平面的個數(shù)是
、1       、3         、1或3         、不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

在空間,下列命題正確的是( 。
A.若直線∥平面,直線,則;
 
B.若, 平面,,則
 
C.若兩平面=,, ,則
D.若,,則

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

下列結(jié)論中,正確的有(    )
①若aα,則a∥平面α                    ②a∥平面α,bα則a∥b
③平面α∥平面β,aα,bβ則a∥b ④平面α∥平面β,點P∈α,a∥β且P∈a則aα
A.1個B.2個C.3個D.4個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知直棱柱中,底面為正方形,又中點,則異面直線、所成的角的余弦值為(    )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

.如圖,由編號,,…,,…()的圓柱自下而上組成.其中每一個圓柱的高與其底面圓的直徑相等,且對于任意兩個相鄰圓柱,上面圓柱的高是下面圓柱的高的一半.若編號1的圓柱的高為,則所有圓柱的體積的和為_______________(結(jié)果保留).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知直線,給出下列命題:
①若,則;     ②若;
③若;      ④若
⑤若
其中正確命題的序號是_______________(把所有正確命題的序號都填上).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

正方體中,點分別在線段上,且 .以下結(jié)論:①;②MN//平面;③MN與異面;④點到面的距離為;⑤若點分別為線段的中點,則由線確定的平面在正方體上的截面為等邊三角形.其中有可能成立的結(jié)論為____________________.

查看答案和解析>>

同步練習(xí)冊答案