設(shè)集合A={x|x>3},B={x|
x-1x-4
<0}
,則A∩B=
(3,4)
(3,4)
分析:先利用解分式不等式化簡集合B,再根據(jù)兩個集合的交集的意義求解A∩B.
解答:解:A={x|x>3},
B={x|
x-1
x-4
<0}={x|1<x<4},
∴A∩B=(3,4),
故答案為:(3,4).
點評:本題屬于以不等式為依托,求集合的交集的基礎(chǔ)題,也是高考常會考的題型.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

2、設(shè)集合A={x||x-2|≤2,x∈R},B={y|y=-x2,-1≤x≤2},則CR(A∩B)等于( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

1、設(shè)集合A={x|y=1gx},B{x|x<1},則A∪B等于(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)集合A={x|x<0},B={x|x2≤1},則A∩B=( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)集合A={x|x+1>0},集合B={x|x2-2<0}則A∪B等于( 。
A、{x|x<-1或x>
2
}
B、{x|-1<x<
2
}
C、{x|x>-
2
}
D、{x|x>-1}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)集合A={x|x2-3x+2=0},B={y|y=x2-2x+3,x∈A},現(xiàn)在我們定義對于任意兩個集合M,N的運算:M?N={x|x∈M∪N,且x?M∩N},則A?B=( 。
A、{1,2,3}B、{1,2}C、{2,3}D、{1,3}

查看答案和解析>>

同步練習冊答案