已知logax=logac+b,x.

答案:
解析:

由于x作為真數(shù),故可直接利用對(duì)數(shù)定義求解;另外,由于等式右端為兩實(shí)數(shù)和的形式,b的存在使變形產(chǎn)生困難,故可考慮將logac移到等式左端,或者將b變?yōu)閷?duì)數(shù)形式.

解法一:

由對(duì)數(shù)定義可知:

x=

解法二:

由已知移項(xiàng)可得logaxlogac=b,

loga=b

由對(duì)數(shù)定義知: =ab,x=c·ab

解法三:

b=logaab,

logax=logac+logaab=logac·ab

x=c·ab


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知y=loga(3-ax)在[0,2]上是x的減函數(shù),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

11、已知y=loga(2-x)是x的增函數(shù),則a的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知y=loga(3-ax)在[0,2]上是x的減函數(shù),則實(shí)數(shù)a的取值范圍為
(1,
3
2
(1,
3
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知logax=2,logay=3,logaz=6,求loga
z-3x•y-2
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:013

已知logax=loga+loga-loga+loga

  (a>0,a≠1)則x為

[  ]

A.3    B.3  C.2    D.17-12

查看答案和解析>>

同步練習(xí)冊(cè)答案