已知橢圓C的中心在原點(diǎn),焦點(diǎn)在x軸上,它的一個(gè)頂點(diǎn)恰好是拋物線的焦點(diǎn),離心率等于

(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;

(Ⅱ)過(guò)橢圓C的右焦點(diǎn)作直線l交橢圓C于A、B兩點(diǎn),交y軸于M點(diǎn),若求證:λ1+λ2為定值.

答案:
解析:

  解:(Ⅰ)設(shè)橢圓C的方程為,則由題意知b=1.

  

  ∴橢圓C的方程為  6分

  (Ⅱ)方法一:設(shè)A、B、M點(diǎn)的坐標(biāo)分別為

  易知F點(diǎn)的坐標(biāo)為(2,0).

  

  方法二:設(shè)A、B、M點(diǎn)的坐標(biāo)分別為又易知F點(diǎn)的坐標(biāo)為(2,0).

  顯然直線l存在的斜率,設(shè)直線l的斜率為k,則直線l的方程是y=k(x-2).

  將直線l的方程代入到橢圓C的方程中,消去y并整理得

  


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:山東省濟(jì)寧市2012屆高二下學(xué)期期末考試?yán)砜茢?shù)學(xué) 題型:解答題

(本小題滿分14分) 已知在平面直角坐標(biāo)系xoy中的一個(gè)橢圓,它的中心在原

點(diǎn),左焦

(1)求該橢圓的標(biāo)準(zhǔn)方程;

(2)若P是橢圓上的動(dòng)點(diǎn),求線段PA中點(diǎn)M的軌跡方程;

(3)過(guò)原點(diǎn)O的直線交橢圓于點(diǎn)B、C,求△ABC面積的最大值。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012屆山東省高二下學(xué)期期末考試?yán)砜茢?shù)學(xué) 題型:解答題

(本小題滿分14分) 已知在平面直角坐標(biāo)系xoy中的一個(gè)橢圓,它的中心在原

。

(1)求該橢圓的標(biāo)準(zhǔn)方程;

(2)若P是橢圓上的動(dòng)點(diǎn),求線段PA中點(diǎn)M的軌跡方程;

(3)過(guò)原點(diǎn)O的直線交橢圓于點(diǎn)B、C,求△ABC面積的最大值。

 

查看答案和解析>>

同步練習(xí)冊(cè)答案