對任意實(shí)數(shù)x,[x]表示不超過x的最大整數(shù),如[3.6]=3,[-3.6]=-4,關(guān)于函數(shù)f(x)=[
x+1
3
-[
x
3
]],有下列命題:
①f(x)是周期函數(shù);
②f(x)是偶函數(shù);
③函數(shù)f(x)的值域?yàn)閧0,1};
④函數(shù)g(x)=f(x)-cosπx在區(qū)間(0,π)內(nèi)有兩個(gè)不同的零點(diǎn),
其中正確的命題為
 
(把正確答案的序號填在橫線上).
考點(diǎn):命題的真假判斷與應(yīng)用
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:根據(jù)函數(shù)f(x)的表達(dá)式,結(jié)合函數(shù)的周期性,奇偶性和值域分別進(jìn)行判斷即可得到結(jié)論.
解答: 解:∵f(x+3)=[
x+4
3
-[
x+3
3
]]=[
x+1
3
+1-[
x
3
+1]]=f(x),∴f(x)是周期函數(shù),3是它的一個(gè)周期,故①正確.
f(x)=[
x+1
3
-[
x
3
]]=
0,x∈[0,2)
1,x∈[2,3)
,結(jié)合函數(shù)的周期性可得函數(shù)的值域?yàn)閧0,1},則函數(shù)不是偶函數(shù),故②錯(cuò),③正確.
f(x)=[
x+1
3
-[
x
3
]]=
0,x∈[0,2)∪[3,π)
1,x∈[2,3)
,故g(x)=f(x)-cosπx在區(qū)間(0,π)內(nèi)有3個(gè)不同的零點(diǎn)
1
2
,
3
2
,2,故④錯(cuò)誤.
則正確的命題是①③,
故答案為:①③
點(diǎn)評:本題主要考查與函數(shù)性質(zhì)有關(guān)的命題的真假判斷,正確理解函數(shù)f(x)的意義是解決本題的關(guān)鍵.綜合性較強(qiáng),難度較大.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

求函數(shù)y=|1-
1
x
-
1
x-1
|最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)y=
4-x2
2
的圖象是曲線C.
(Ⅰ)在如圖的坐標(biāo)系中作出曲線C的示意圖,并標(biāo)出曲線C與x軸的左、右交點(diǎn)A1,A2;
(Ⅱ)設(shè)P是曲線C上位于第一象限的任意一點(diǎn),過A2作A2R垂直于直線A1P于R,設(shè)A2R與曲線C交于Q,求直線PQ斜率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=sinx+cosx,f′(x)是f(x)的導(dǎo)數(shù),若f(x)=2f′(x),則
sin2x-cos2x
cos2x
的值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對于實(shí)數(shù)x,當(dāng)且僅當(dāng)n≤x<n+1時(shí),n∈N*,[x]=n,則不等式4[x]2-36[x]+45<0的解集是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

方程mx2+ny2=1表示焦點(diǎn)在y軸上橢圓的充要條件是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖平面內(nèi)有三個(gè)向量
OA
、
OB
OC
,其中
OA
OB
的夾角為120°,
OA
OC
的夾角為30°,|
OA
|=|
OB
|=1,|
OC
|=4
3
.若
OC
OA
OB
(λ,μ),則λ+μ的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知空間中不共面的四個(gè)點(diǎn)A、B、C、D,每2個(gè)點(diǎn)之間均可連一條線段,任意取出三條線段中,A、B、C、D四個(gè)點(diǎn)均在這三條線段的端點(diǎn)中的概率是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若橢圓的中心在原點(diǎn),長軸長為10,一個(gè)焦點(diǎn)坐標(biāo)為(-3,0),則該橢圓的標(biāo)準(zhǔn)方程是
 

查看答案和解析>>

同步練習(xí)冊答案