4.若一個(gè)橢圓長(zhǎng)軸的長(zhǎng)度、短軸的長(zhǎng)度和焦距成等比數(shù)列,則此橢圓的離心率為$\frac{{\sqrt{5}-1}}{2}$.

分析 設(shè)出橢圓的焦距、短軸長(zhǎng)、長(zhǎng)軸長(zhǎng)分別為2c,2b,2a,通過(guò)橢圓的短軸長(zhǎng)是長(zhǎng)軸長(zhǎng)與焦距的等比中項(xiàng),建立關(guān)于a,b,c的等式,求出橢圓的離心率即可.

解答 解:設(shè)出橢圓的焦距、短軸長(zhǎng)、長(zhǎng)軸長(zhǎng)分別為2c,2b,2a,
∵橢圓長(zhǎng)軸的長(zhǎng)度、短軸的長(zhǎng)度和焦距成等比數(shù)列,
∴4b2=2a•2c,
∴b2=a•c
∴b2=a2-c2=a•c,
由e=$\frac{c}{a}$,
兩邊同除以a2得:e2+e-1=0,
解得:e=$\frac{-1±\sqrt{5}}{2}$,
由0<e<1,
∴e=$\frac{{\sqrt{5}-1}}{2}$.
故答案為:$\frac{{\sqrt{5}-1}}{2}$.

點(diǎn)評(píng) 本題考查橢圓的基本性質(zhì),等比數(shù)列性質(zhì)的應(yīng)用,考查計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.△ABC的內(nèi)角A、B、C所對(duì)邊長(zhǎng)分別為a、b、c,已知cosA=$\frac{12}{13}$,bc=156.
(1)求△ABC的面積;
(2)若c-b=1,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.已知直線m,n和平面α,滿足m?α,n⊥α,則直線m,n的關(guān)系是( 。
A.平行B.異面C.垂直D.平行或異面

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.設(shè)f(x)的定義域?yàn)閧x|0≤x≤2},則函數(shù)y=f(x+3)的定義域?yàn)閧x|-3<x<-1}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知函數(shù)f(x)=4sinxcos(x+$\frac{π}{6}$),x∈R.
(Ⅰ)求函數(shù)f(x)的單調(diào)減區(qū)間;
(Ⅱ)求函數(shù)f(x)在$[{0,\frac{π}{2}}]$上的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.如圖,在四棱錐P-ABCD中,底面ABCD為正方形側(cè)面PAD⊥底面ABCD,F(xiàn)為BD中點(diǎn),PA=PD=AD=2
(I)在線段PA上是否存在點(diǎn)E,使得EF∥平面PBC,指出點(diǎn)E的位置并證明;
( II)求二面角E-DF-A的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.某學(xué)校課外活動(dòng)興趣小組對(duì)兩個(gè)相關(guān)變量收集到5組數(shù)據(jù)如下表:
x1020304050
y68758189
由最小二乘法求得回歸方程為$\widehaty=0.67x+54.9$,現(xiàn)發(fā)現(xiàn)表中有一個(gè)數(shù)據(jù)模糊不清,請(qǐng)推斷該數(shù)據(jù)的值為
( 。
A.60B.62C.68D.68.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.函數(shù)f(x)是定義在R上的奇函數(shù),且為增函數(shù),若f(a-2)+f(3-2a)<0,則a的取值范圍是(  )
A.(1,+∞)B.(-1,+∞)C.(-∞,+∞)D.(-∞,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.下列函數(shù)與y=x有相同圖象的一個(gè)函數(shù)是( 。
A.y=$\sqrt{{x}^{2}}$B.y=logaax(a>0且a≠1)
C.y=a${\;}^{lo{g}_{a}{a}^{x}}$(a>0且a≠1)D.y=$\frac{{x}^{2}}{x}$

查看答案和解析>>

同步練習(xí)冊(cè)答案