10.若函數(shù)f(x)=$\left\{\begin{array}{l}{x+2,x>0}\\{{x}^{2}-1,x≤0}\end{array}\right.$,則f(f(-2))=5.

分析 先求出f(-2)=(-2)2-1=3,從而f(f(-2))=f(3),由此能求出結(jié)果.

解答 解:∵函數(shù)f(x)=$\left\{\begin{array}{l}{x+2,x>0}\\{{x}^{2}-1,x≤0}\end{array}\right.$,
∴f(-2)=(-2)2-1=3,
f(f(-2))=f(3)=3+2=5.
故答案為:5.

點(diǎn)評 本題考查函數(shù)值的求法,是基礎(chǔ)題,解題時要認(rèn)真審題,注意函數(shù)性質(zhì)的合理運(yùn)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.如圖,三棱錐P-ABC中,△ABC為等腰直角三角形,AB=BC=2,PA=PB=PC=$\sqrt{6}$.
(1)求證:平面PAC⊥平面ABC;
(2)求平面PBC和平面ABC夾角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.《九章算術(shù)》是我國古代一部重要的數(shù)學(xué)著作,書中給出了如下問題:“今有良馬與駑馬發(fā)長安,至齊,齊去長安一千一百二十五里.良馬初日行一百零三里,日增一十三里.駑馬初日行九十七里,日減半里.良馬先至齊,復(fù)還迎駑馬,問幾何日相逢?”其大意為:“現(xiàn)有良馬和駑馬同時從長安出發(fā)到齊去,已知長安和齊的距離是1125里.良馬第一天行103里,之后每天比前一天多行13里.駑馬第一天行97里,之后每天比前一天少行0.5里.良馬到齊后,立刻返回去迎駑馬,多少天后兩馬相遇?”在這個問題中兩馬從出發(fā)到相遇的天數(shù)為9.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.執(zhí)行如圖所示的程序框圖,輸出的s值為( 。
A.0B.1C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0\;,b>0})$的一條漸近線過點(diǎn)(2,2),則雙曲線的離心率等于$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.設(shè)0<x<$\frac{π}{2}$,記a=sinx,b=esinx,c=lnsinx,則a,b,c的大小關(guān)系為(  )
A.a<b<cB.b<a<cC.a<c<bD.c<a<b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知向量$\overrightarrow a$,$\overrightarrow b$夾角為$\frac{3π}{4}$,且$\overrightarrow a=(1,1)$,$|{\overrightarrow a-2\overrightarrow b}|=\sqrt{10}$,則|$\overrightarrow b$|=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知正項數(shù)列{an}滿足,a1=1,an+1=$\frac{{a}_{n}}{2{a}_{n}+1}$(n∈N+).
(1)證明數(shù)列{$\frac{1}{{a}_{n}}$}為等差數(shù)列,并求數(shù)列{an}的通項公式;
(2)設(shè)bn=(-1)n•n•an•an+1,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知函數(shù)f(x)=lnx.
(Ⅰ)y=kx與f(x)相切,求k的值;
(Ⅱ)證明:當(dāng)a≥1時,對任意x>0不等式f(x)≤ax+$\frac{a-1}{x}$-1恒成立.

查看答案和解析>>

同步練習(xí)冊答案