【題目】數(shù)據(jù)x1,x2,x3,x4,x5的方差是2,則數(shù)據(jù)x1-1,x2-1,x3-1,x4-1,x5-1的方差是____.
【答案】2
【解析】
根據(jù)平均數(shù),方差的公式進(jìn)行計(jì)算.
依題意,得(x1+x2+x3+x4+x5),
∴x1﹣1、x2﹣1、x3﹣1、x4﹣1、x5﹣1的平均數(shù)為
[(x1﹣1)+(x2﹣1)+(x3﹣1)+(x4﹣1)+(x5﹣1)]
=(x1+x2+x3+x4+x5)﹣1=1,
∵數(shù)據(jù)x1,x2,x3,x4,x5的方差
S2[(x1)2+(x2)2+(x3)2+(x4)2+(x5)2]=2,
∴數(shù)據(jù)x1﹣1、x2﹣1、x3﹣1、x4﹣1、x5﹣1的方差
S′2[(x1﹣1﹣1)2+(x2﹣1﹣1)2+(x3﹣1﹣1)2+(x4﹣1﹣1)2+(x5﹣1﹣1)2]
[(x1)2+(x2)2+(x3)2+(x4)2+(x5)2]=2.
故答案為2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市春節(jié)期間7家超市的廣告費(fèi)支出(萬元)和銷售額(萬元)數(shù)據(jù)如下:
超市 | A | B | C | D | E | F | G |
廣告費(fèi)支出 | 1 | 2 | 4 | 6 | 11 | 13 | 19 |
銷售額 | 19 | 32 | 40 | 44 | 52 | 53 | 54 |
參數(shù)數(shù)據(jù)及公式:,,,,,,.
(1)若用線性回歸模型擬合y與x的關(guān)系,求y關(guān)于x的線性回歸方程;
(2)用對(duì)數(shù)回歸模型擬合y與x的關(guān)系,可得回歸方程:,經(jīng)計(jì)算得出線性回歸模型和對(duì)數(shù)模型的分別約為0.75和0.97,請(qǐng)用說明選擇哪個(gè)回歸模型更合適,并用此模型預(yù)測(cè)A超市廣告費(fèi)支出為8萬元時(shí)的銷售額.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知O為坐標(biāo)原點(diǎn),對(duì)于函數(shù),稱向量為函數(shù)的伴隨向量,同時(shí)稱函數(shù)為向量的伴隨函數(shù).
(1)設(shè)函數(shù),試求的伴隨向量;
(2)記向量的伴隨函數(shù)為,求當(dāng)且時(shí)的值;
(3)由(1)中函數(shù)的圖象(縱坐標(biāo)不變)橫坐標(biāo)伸長(zhǎng)為原來的2倍,再把整個(gè)圖象向右平移個(gè)單位長(zhǎng)度得到的圖象,已知,,問在的圖象上是否存在一點(diǎn)P,使得.若存在,求出P點(diǎn)坐標(biāo);若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】己知函數(shù).
(1)若f(x)有兩個(gè)極值點(diǎn),求實(shí)數(shù)m的取值范圍:
(2)若函數(shù)有且只有三個(gè)不同的零點(diǎn),分別記為x1,x2,x3,設(shè)x1<x2<x3,且的最大值是e2,求x1x3的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義在上的奇函數(shù)有最小正周期,且時(shí),.
(1)求在上的解析式;
(2)判斷在上的單調(diào)性,并給予證明;
(3)當(dāng)為何值時(shí),關(guān)于方程在上有實(shí)數(shù)解?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)在區(qū)間上有最大值4,最小值為0.
(1)求函數(shù)的解析式;
(2)設(shè),若對(duì)任意恒成立,試求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知雙曲線(,),,是雙曲線的兩個(gè)頂點(diǎn),是雙曲線上的一點(diǎn),且與點(diǎn)在雙曲線的同一支上,關(guān)于軸的對(duì)稱點(diǎn)是,若直線,的斜率分別是,,且,則雙曲線的離心率是( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】【題目】已知拋物線C:y2=2x,過點(diǎn)(2,0)的直線l交C于A,B兩點(diǎn),圓M是以線段AB為直徑的圓.
(1)證明:坐標(biāo)原點(diǎn)O在圓M上;
(2)設(shè)圓M過點(diǎn)P(4,-2),求直線l與圓M的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(,),其圖像與直線相鄰兩個(gè)交點(diǎn)的距離為,若對(duì)于任意的恒成立, 則的取值范圍是( )
A. B. C. D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com