18.對任意的實數(shù)x,若[x]表示不超過x的最大整數(shù),則“-1<x-y<1”是“[x]=[y]”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

分析 根據(jù)[x]的定義,利用充分條件和必要條件的定義進(jìn)行判斷即可.

解答 解:“-1<x-y<1”即|x-y|<1,
若“[x]=[y]”,
設(shè)[x]=a,[y]=a,x=a+b,y=a+c其中b,c∈[0,1)
∴x-y=b-c,
∵0≤b<1,0≤c<1,
∴-1<-c≤0,
則-1<b-c<1,
∴|x-y|<1
即“[x]=[y]”成立能推出“|x-y|<1”成立
反之,例如x=1.2,y=2.1滿足|x-y|<1但[x]=1,[y]=2即|x-y|<1成立,推不出[x]=[y]
故“-1<x-y<1”是“[x]=[y]”的必要不充分條件,
故選:B.

點評 本題主要考查充分條件和必要條件的判斷,正確理解[x]的意義是解決本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知a,b∈R,則“ab>0“是“$\frac{a}$+$\frac{a}$>2”的( 。
A.充分非必要條件B.必要非充分條件
C.充要條件D.既非充分也非必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.求下列各式的值:
(1)${(2\frac{1}{4})^{\frac{1}{2}}}$-${(π-1)^0}-{(3\frac{3}{8})^{-\frac{2}{3}}}$; (2)${log_3}^{\frac{{\sqrt{3}}}{3}}$+lg5+lg0.2+${7^{{{log}_7}^2}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知圓O:x2+y2=r2(r>0),直線l:y=x+1.若圓O上恰有兩個點到直線的距離是1,則r的取值范圍是1$-\frac{\sqrt{2}}{2}$<r<1+$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.設(shè)命題p:?x<0,x2≥1,則?p為( 。
A.?x≥0,x2<1B.?x<0,x2<1C.?x≥0,x2<1D.?x<0,x2<1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.曲線y=$\frac{x}{x+1}$+lnx在點(1,$\frac{1}{2}$)處的切線方程為( 。
A.y=$\frac{5}{4}$x+$\frac{3}{4}$B.y=$\frac{5}{4}$x-$\frac{3}{4}$C.y=-$\frac{5}{4}$x-$\frac{3}{4}$D.y=-$\frac{5}{4}$x+$\frac{3}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.小明想沏壺茶喝,當(dāng)時的情況是,開水沒有,燒開水需要15分鐘,燒開水的壺要洗,需要1分鐘,沏茶的壺和茶杯要洗,需2分鐘,茶葉已有,取茶葉需1分鐘,沏茶也需1分鐘,小明要喝到自己所沏的茶至少需要花的時間為( 。
A.16分鐘B.19分鐘C.20分鐘D.17分鐘

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知橢圓和雙曲線有共同的焦點F1,F(xiàn)2,P是它們的一個交點,且∠F1PF2=$\frac{π}{3}$,記橢圓和雙曲線的離心率分別為e1,e2,則當(dāng)e1e2取最小值時,e1,e2分別為( 。
A.$\frac{1}{2}$,$\frac{\sqrt{5}}{2}$B.$\frac{\sqrt{3}}{3}$,$\frac{\sqrt{6}}{2}$C.$\frac{\sqrt{2}}{2}$,$\frac{\sqrt{6}}{2}$D.$\frac{\sqrt{2}}{4}$,$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.某交警大隊對轄區(qū)A路段在連續(xù)10天內(nèi)的n天,對過往車輛駕駛員進(jìn)行血液酒精濃度檢查,查得駕駛員酒駕率f(n)如表;
n56789
f(n)0.060.060.050.040.02
可用線性回歸模型擬合f(n)與n的關(guān)系.
(1)建立f(n)關(guān)于n的回歸方程;
(2)該交警大隊將在2016年12月11日至20日和21日至30日對A路段過往車輛駕駛員進(jìn)行血液酒精濃度檢查,分別檢查n1,n2天,其中n1,n2都是從8,9,10中隨機(jī)選擇一個,用回歸方程結(jié)果求兩階段查得的駕駛員酒駕率都不超過0.03的概率.
附注:
參考數(shù)據(jù):$\sum_{n=5}^9{nf(n)=1.51}$,$\sum_{n=5}^9{{n^2}=255}$,$\overline{f(n)}$=0.046,回歸方程$\widehat{f(n)}$=$\widehat$n+$\widehat{a}$中斜率和截距最小乘估計公式分別為:$\widehatb=\frac{{\sum_{n=5}^9{nf(n)-5\overline{nf(n)}}}}{{\sum_{n=5}^9{{n^2}-5{{\overline n}^2}}}}$,$\widehata=\overline{f(n)}$-$\widehatb\overline n$.

查看答案和解析>>

同步練習(xí)冊答案