已知定義在R上的函數(shù)f(x)對任意實數(shù)x1、x2滿足關系:f(x1x2)=f(x1)+f(x2)+2

(1)求f(0)的值;

(2)證明:f(x)的圖象關于點(0,-2)成中心對稱圖形;

(3)若x>0,則有f(x)>-2,求證:f(x)R上是增函數(shù).

答案:
解析:

  解:(1)在關系式f(x1x2)=f(x1)+f(x2)+2中令,x1x2=0得f(0)=-2  2分

  (2)證明:設P(x0y0)為曲線yf(x)上的任一點,即y0f(x0)點P關于點(0,-2)對稱的點  3分

  下面證明,下面證明點在曲線yf(x)上

  再令x1x0x2=-x0

  ∴f(x0x0)=f(0)=f(x0)+f(-x0)+2

  ∴f(-x0)=-4-f(x0)=-4-y0  6分

  ∴(-x0,-4-y0)在曲線yf(x)上

  ∴f(x)的圖象關于點(0,-2)成中心對稱圖形  7分

  (2)設x1x2,則x2x1>0,

  ∴f(x2x1)>-2  8分

  ∴f(x2x1)=f(x2)+f(-x1)+2=f(x2)-4-f(x1)+2>-2  11分

  ∴f(x2)-f(x1)>0 即f(x2)>f(x1)

  ∴f(x)在R上是增函數(shù)  12分


練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知定義在R上的函數(shù)y=f(x)滿足下列條件:
①對任意的x∈R都有f(x+2)=f(x);
②若0≤x1<x2≤1,都有f(x1)>f(x2);
③y=f(x+1)是偶函數(shù),
則下列不等式中正確的是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知定義在R上的函數(shù)f(x)滿足:f(x)=
f(x-1)-f(x-2),x>0
log2(1-x),       x≤0
  則:
①f(3)的值為
0
0
,
②f(2011)的值為
-1
-1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知定義在R上的函數(shù)f(x)滿足f(x+1)=-f(x),且x∈(-1,1]時f(x)=
1,(-1<x≤0)
-1,(0<x≤1)
,則f(3)=( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知定義在R上的函數(shù)f(x)是偶函數(shù),對x∈R都有f(2+x)=f(2-x),當f(-3)=-2時,f(2013)的值為( 。
A、-2B、2C、4D、-4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知定義在R上的函數(shù)f(x),對任意x∈R,都有f(x+6)=f(x)+f(3)成立,若函數(shù)y=f(x+1)的圖象關于直線x=-1對稱,則f(2013)=( 。
A、0B、2013C、3D、-2013

查看答案和解析>>

同步練習冊答案