(本小題滿分14分)
已知函數(shù)f(x)=(x2+ax-2a-3)·e3-x (a∈R)
(1)討論f(x)的單調(diào)性;
(2)設(shè)g(x)=(a2+)ex(a>0),若存在x1,x2∈[0,4]使得|f(x1)-g(x2)|<1成立,求a的取值范圍.
⑴,此時(shí)在上為減函數(shù),在上為增函數(shù),在上為減函數(shù);
當(dāng)時(shí),,此時(shí)在上為減函數(shù);
當(dāng)時(shí),此時(shí)在上為減函數(shù),在上為增函數(shù),在上為減函數(shù).
⑵ a的取值范圍為.
解析試題分析:⑴,令,
即所以
所以 …………………………………………………………………3分
,此時(shí)在上為減函數(shù),在上為增函數(shù),在上為減函數(shù);
當(dāng)時(shí),,此時(shí)在上為減函數(shù);
當(dāng)時(shí),此時(shí)在上為減函數(shù),在上為增函數(shù),在上為減函數(shù). ………………………………………………………………………………6分
⑵ 當(dāng)時(shí),,則在上為增函數(shù),在上為減函數(shù)
又
∴在上的值域?yàn)?img src="http://thumb.1010pic.com/pic5/tikupic/0f/8/1ouva3.png" style="vertical-align:middle;" /> ………………………………………8分
又在上為增函數(shù),其值域?yàn)?img src="http://thumb.1010pic.com/pic5/tikupic/e7/1/17e3x3.png" style="vertical-align:middle;" />……10分
等價(jià)于……………………………………………12分
存在使得成立,只須
,又
∴a的取值范圍為. ………………………………………………………………14分
考點(diǎn):本題主要考查應(yīng)用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,恒成立問(wèn)題。
點(diǎn)評(píng):典型題,本題屬于導(dǎo)數(shù)應(yīng)用中的基本問(wèn)題,(2)涉及恒成立問(wèn)題,轉(zhuǎn)化成求函數(shù)的最值,這種思路是一般解法,往往要利用“分離參數(shù)法”,本題最終化為最值之間故選的研究,體現(xiàn)考題“起點(diǎn)高,落點(diǎn)低”的特點(diǎn)。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知:函數(shù)
(1)求函數(shù)在時(shí)的值域;
(2)求函數(shù)在時(shí)的單調(diào)區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本題滿分12分)已知函數(shù)
若函數(shù)在區(qū)間(a,a+)上存在極值,其中a>0,求實(shí)數(shù)a的取值范圍;
如果當(dāng)時(shí),不等式恒成立,求實(shí)數(shù)的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題12分)
已知奇函數(shù)對(duì)任意,總有,且當(dāng)時(shí),.
(1)求證:是上的減函數(shù).
(2)求在上的最大值和最小值.
(3)若,求實(shí)數(shù)的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù),.
(Ⅰ)若在上為單調(diào)函數(shù),求m的取值范圍;
(Ⅱ)設(shè),若在上至少存在一個(gè),使得成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分14分)已知函數(shù)。
(Ⅰ)若函數(shù)在定義域內(nèi)為增函數(shù),求實(shí)數(shù)的取值范圍;
(Ⅱ)設(shè),若函數(shù)存在兩個(gè)零點(diǎn),且滿足,問(wèn):函數(shù)在處的切線能否平行于軸?若能,求出該切線方程;若不能,請(qǐng)說(shuō)明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)
(1)若函數(shù)y=f(x)的圖象切x軸于點(diǎn)(2,0),求a、b的值;
(2)設(shè)函數(shù)y="f(x)" 的圖象上任意一點(diǎn)的切線斜率為k,試求的充要條件;(3)若函數(shù)y=f(x)的圖象上任意不同的兩點(diǎn)的連線的斜率小于1,求證。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)在處取得極小值2.
(1)求函數(shù)的解析式;
(2)求函數(shù)的極值;
(3)設(shè)函數(shù),若對(duì)于任意,總存在,使得,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com