在學習二項式定理時,我們知道楊輝三角中的數(shù)具有兩個性質(zhì):①每一行中的二項式系數(shù)是“對稱”的,即第1項與最后一項的二項式系數(shù)相等,第2項與倒數(shù)第2項的二項式系數(shù)相等,…;②圖中每行兩端都是1,而且除1以外的每一個數(shù)都等于它肩上兩個數(shù)的和.我們也知道,性質(zhì)①對應于組合數(shù)的一個性質(zhì):cnm=Cnn-m
(1)試寫出性質(zhì)②所對應的組合數(shù)的另一個性質(zhì);
(2)請利用組合數(shù)的計算公式對(1)中組合數(shù)的另一個性質(zhì)作出證明.
(1)性質(zhì)②所對應的組合數(shù)的另一個性質(zhì)是
      
Cmn+1
=
Cmn
+
Cm-1n
   
(2)因為
Cmn+1
=
(n+1)!
m!(n+1-m)!

     
Cmn
+
Cm-1n
=
n!
m!(n-m)!
+
n!
(m-1)!(n+1-m)!
                 
=
n![(n+1-m)+m]
m!(n+1-m)!
=
n!(n+1)
m!(n+1-m)!
=
(n+1)!
m!(n+1-m)!

所以
Cmn+1
=
Cmn
+
Cm-1n
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

在學習二項式定理時,我們知道楊輝三角中的數(shù)具有兩個性質(zhì):①每一行中的二項式系數(shù)是“對稱”的,即第1項與最后一項的二項式系數(shù)相等,第2項與倒數(shù)第2項的二項式系數(shù)相等,…;②圖中每行兩端都是1,而且除1以外的每一個數(shù)都等于它肩上兩個數(shù)的和.我們也知道,性質(zhì)①對應于組合數(shù)的一個性質(zhì):cnm=Cnn-m
(1)試寫出性質(zhì)②所對應的組合數(shù)的另一個性質(zhì);
(2)請利用組合數(shù)的計算公式對(1)中組合數(shù)的另一個性質(zhì)作出證明.

查看答案和解析>>

科目:高中數(shù)學 來源:江蘇省無錫一中2010-2011學年高二下學期期中考試數(shù)學理科試題 題型:044

在學習二項式定理時,我們知道楊輝三角中的數(shù)具有兩個性質(zhì):①每一行中的二項式系數(shù)是“對稱”的,即第1項與最后一項的二項式系數(shù)相等,第2項與倒數(shù)第2項的二項式系數(shù)相等,……;②圖中每行兩端都是1,而且除1以外的每一個數(shù)都等于它肩上兩個數(shù)的和.我們也知道,性質(zhì)①對應于組合數(shù)的一個性質(zhì):

(1)試寫出性質(zhì)②所對應的組合數(shù)的另一個性質(zhì);

(2)請利用組合數(shù)的計算公式對(1)中組合數(shù)的另一個性質(zhì)作出證明.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(本題共2小題,第一小題4分,第二小題8分,共12分)

在學習二項式定理時,我們知道楊輝三角中的數(shù)具有兩個性質(zhì):① 每一行中的二項式系數(shù)是“對稱”的,即第1項與最后一項的二項式系數(shù)相等,第2項與倒數(shù)第2項的二項式系數(shù)相等,;② 圖中每行兩端都是1,而且除1以外的每一個數(shù)都等于它肩上兩個數(shù)的和.我們也知道,性質(zhì)①對應于組合數(shù)的一個性質(zhì):

(1)試寫出性質(zhì)②所對應的組合數(shù)的另一個性質(zhì);

(2)請利用組合數(shù)的計算公式對(1)中組合數(shù)的另一個性質(zhì)作出證明.

查看答案和解析>>

同步練習冊答案