如果直線y=kx+1與圓x2+y2+kx+my-4=0交于M、N兩點,且M、N關于直線x+y=0對稱,則不等式組:表示的平面區(qū)域的面積是( )
A.
B.
C.1
D.2
【答案】分析:由M與N關于x+y=0對稱得到直線y=kx+1與x+y=0垂直,利用兩直線垂直時斜率的乘積為-1,得到k的值;設出M與N的坐標,然后聯(lián)立y=x+1與圓的方程,消去y得到關于x的一元二次方程,根據(jù)韋達定理得到兩橫坐標之和的關于m的關系式,再根據(jù)MN的中點在x+y=0上得到兩橫坐標之和等于-1,列出關于m的方程,求出方程的解得到m的值,把k的值和m的值代入不等式組,在數(shù)軸上畫出相應的平面區(qū)域,求出面積即可.
解答:解:因為M與N關于x+y=0對稱,
直線y=kx+1與直線x+y=0垂直得到k=1,
所以直線MN的方程為y=x+1;
設M(x1,y1),N(x2,y2),
聯(lián)立直線與圓的方程得,
消去y得2x2+(3+m)x+m-3=0則x1+x2=-;
由MN中點在直線x+y=0上,代入得+=0即x1+x2+y1+y2=0,
又MN的中點在y=x+1上,得y1=x1+1,y2=x2+1,所以x1+x2=-1,
則-=-1,解得m=-1;
所以把k=1,m=-1代入不等式組得,
畫出不等式所表示的平面區(qū)域如圖
△AOB為不等式所表示的平面區(qū)域,聯(lián)立解得B(-,),A(-1,0),
所以S△AOB=×|-1|×|-|=
故選A
點評:此題考查學生掌握直線與圓的位置關系,靈活運用韋達定理及中點坐標公式化簡求值,會進行簡單的線性規(guī)劃,是一道中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

如果直線y=kx+1與圓x2+y2+kx+my-4=0交于M、N兩點,且M、N關于直線x+y=0對稱,則不等式組:
kx-y+1≥0
kx-my≤0
y≥0
表示的平面區(qū)域的面積是(  )
A、
1
4
B、
1
2
C、1
D、2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如果直線y=kx+1與圓x2+y2+kx+my-4=0交于M、N兩點,且M、N關于直線x+y=0對稱,那么可求得圓心的橫坐標為
 
,直線被圓所截得的弦MN的長度為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(1)我潛艇在海島A南偏西
π6
,相距海島12海里的B處,發(fā)現(xiàn)敵艦正由海島A朝正東方向以10節(jié)的速度航行,我潛艇要用2小時追上敵艦,求我潛艇需要的速度大。1節(jié)等于每小時 1海里);
(2)如果直線y=kx-1與雙曲線x2-y2=1的右支有兩個不同的公共點,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如果直線y=kx+1與圓x2+y2+kx+my-4=0交于M、N兩點,且M、N關于直線x+y-1=0對稱,則k-m的值為
4
4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•東城區(qū)二模)已知橢圓C:
x2
a2
+
y2
b2
=1
(a>b>0)的離心率e=
3
2
,原點到過點A(a,0),B(0,b)的直線的距離是
4
5
5

(1)求橢圓C的方程;
(2)若橢圓C上一動點P(x0,y0)關于直線y=2x的對稱點為P1(x1,y1),求x12+y12的取值范圍.
(3)如果直線y=kx+1(k≠0)交橢圓C于不同的兩點E,F(xiàn),且E,F(xiàn)都在以B為圓心的圓上,求k的值.

查看答案和解析>>

同步練習冊答案