A. | $\frac{n}{3(2n+3)}$ | B. | $\frac{2n}{3(2n+3)}$ | C. | $\frac{n-1}{3(2n+1)}$ | D. | $\frac{n}{2n+1}$ |
分析 數(shù)列{an}的前項n和Sn=n2+2n,利用遞推關(guān)系可得an,再利用“裂項求和”方法即可得出.
解答 解:∵數(shù)列{an}的前項n和Sn=n2+2n,
∴n=1時,a1=S1=3.n≥2時,an=Sn-Sn-1=n2+2n-[(n-1)2+2(n-1)]=2n+1,n=1時也成立.
∴an=2n+1,
∴$\frac{1}{{a}_{n}{a}_{n+1}}$=$\frac{1}{(2n+1)(2n+3)}$=$\frac{1}{2}(\frac{1}{2n+1}-\frac{1}{2n+3})$.
∴數(shù)列$\{\frac{1}{{{a_n}{a_{n+1}}}}\}$的前項n和=$\frac{1}{2}[(\frac{1}{3}-\frac{1}{5})$+$(\frac{1}{5}-\frac{1}{7})$+…+$(\frac{1}{2n+1}-\frac{1}{2n+3})]$
=$\frac{1}{2}(\frac{1}{3}-\frac{1}{2n+3})$
=$\frac{n}{3(2n+3)}$.
故選:A.
點評 本題考查了遞推關(guān)系、“裂項求和”方法,考查了推理能力與計算能力,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
x | -1 | 0 | 1 | 2 | 3 |
f(x) | -0.677 | 3.011 | 5.432 | 5.980 | 7.651 |
g(x) | -0.530 | 3.451 | 4.890 | 5.241 | 6.892 |
A. | (-1,0) | B. | (0,1) | C. | (1,2) | D. | (2,3) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com