在極坐標(biāo)系中,點(diǎn)M(4,
4
)到直線ρsin(θ+
π
4
)=2的距離為
 
考點(diǎn):簡(jiǎn)單曲線的極坐標(biāo)方程
專題:坐標(biāo)系和參數(shù)方程
分析:求得M的直角坐標(biāo),把直線的極坐標(biāo)方程化為直角坐標(biāo)方程,利用點(diǎn)到直線的距離公式求得M到直線的距離.
解答: 解:點(diǎn)M(4,
4
)的直角坐標(biāo)為(-2
2
,2
2
),
直線ρsin(θ+
π
4
)=2化為直角坐標(biāo)方程為
2
x+
2
y-4=0,
故點(diǎn)M到直線的距離為
|
2
×(-2
2
)+
2
×2
2
-4|
2+2
=2,
故答案為:2.
點(diǎn)評(píng):本題主要考查把極坐標(biāo)方程化為直角坐標(biāo)方程的方法,點(diǎn)到直線的距離公式的應(yīng)用,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

現(xiàn)有兩只口袋A,B,口袋A中裝著編號(hào)分別為1,3,5,7,9的五個(gè)形狀完全相同的小球,口袋B中裝著編號(hào)分別為2,4,6,8的四個(gè)形狀完全相同的小球,某人先從口袋A中隨機(jī)摸出一小球,記編號(hào)為a,然后從口袋B中摸小球,若所得小球的編號(hào)為2a,則停止,否則再?gòu)目诖麭中剩余的小球中摸一球,將從口袋B中所得小球的編號(hào)相加,若和為2a,則停止,否則一直摸下去,直到和為2a為止,或者直到小球摸完為停止.
(1)求此人只摸兩次的概率;
(2)若此人摸小球的次數(shù)X與所得獎(jiǎng)金的函數(shù)關(guān)系為Y=100(5-X),求獎(jiǎng)金Y的分布列與期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

直線l經(jīng)過(guò)點(diǎn)A(1,2),B(3,0)則其斜率k=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

觀察下列等式:
(x2+x+1)0=1;
(x2+x+1)1=x2+x+1;
(x2+x+1)2=x4+2x3+3x2+2x+1;
(x2+x+1)3=x6+3x5+6x4+7x3+6x2+3x+1;
由此可以推測(cè):(x2+x+1)5的展開式中,系數(shù)最大的項(xiàng)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知扇形的弧長(zhǎng)為
6
,半徑為3,則扇形的圓心角為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知a=4
π
2
0
cos(2x+
π
6
)dx,則二項(xiàng)式(x2+
a
x
5的展開式中x的系數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若非空集合A={x|2a+1≤x≤4a-3},B={x|3≤x≤33},則能使A⊆(A∩B)成立的所有a的集合是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在極坐標(biāo)系中,已知圓C的圓心為(2,
π
2
),半徑為2,直線θ=α(0≤α≤
π
2
,ρ∈R)被圓C截得的弦長(zhǎng)為2
3
,則α的值等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

拋物線y2=4x的焦點(diǎn)弦被焦點(diǎn)分成長(zhǎng)是m和n的兩部分,則m與n的關(guān)系是( 。
A、m+n=mnB、m+n=4
C、mn=4D、無(wú)法確定

查看答案和解析>>

同步練習(xí)冊(cè)答案