精英家教網(wǎng)已知數(shù)列{an}滿足如圖所示的程序框圖.
(I)寫出數(shù)列{an}的一個(gè)遞推關(guān)系式;
(II)證明:{an+1-2an}是等比數(shù)列;
(III)證明{
an2n
}
是等差數(shù)列,并求{an}的通項(xiàng)公式.
分析:(I) 由程序框圖可直接得到a n+2=4 an+1-4an
(Ⅱ)將a n+2=4 an+1-4an移向變形得出an+1-2an =2(a n+1-2an),從而可證{an+1-2an}是等比數(shù)列;
(Ⅲ)由(Ⅱ)可求出an+1-2an=-2 n-1 兩邊同除以2n+1變形構(gòu)造出
an+1
2n+1
-
an
2n
=
1
4
,從而可解決.
解答:解:(I) 由程序框圖可知,數(shù)列{an}的一個(gè)遞推關(guān)系式
a1=1,a2=1,a n+2=4 an+1-4an
(II)由an+1-2an =2(a n+1-2an),且a2-2a1=-1
∴數(shù)列{an+1-2an}是以-1為首項(xiàng),2為公比的等比數(shù)列
(III) 由(II)有an+1-2an=-2 n-1
an+1
2n+1
-
an
2n
=
1
4
,又
a2
21
=
1
2

l數(shù)列{
an
2n
}
是以
1
2
為首項(xiàng),以-
1
4
為公差的等差數(shù)列
an
2n
=
1
2
+ (-
1
4
)(n-1)
,
∴an=(
3-n
4
)•2n
點(diǎn)評(píng):本題考查程序框圖知識(shí),等差數(shù)列、等比數(shù)列的定義及判定.考查轉(zhuǎn)化、計(jì)算、分析解決問題的能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}滿足:a1=1且an+1=
3+4an
12-4an
, n∈N*

(1)若數(shù)列{bn}滿足:bn=
1
an-
1
2
(n∈N*)
,試證明數(shù)列bn-1是等比數(shù)列;
(2)求數(shù)列{anbn}的前n項(xiàng)和Sn;
(3)數(shù)列{an-bn}是否存在最大項(xiàng),如果存在求出,若不存在說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}滿足
1
2
a1+
1
22
a2+
1
23
a3+…+
1
2n
an=2n+1
則{an}的通項(xiàng)公式
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}滿足:a1=
3
2
,且an=
3nan-1
2an-1+n-1
(n≥2,n∈N*).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)證明:對(duì)于一切正整數(shù)n,不等式a1•a2•…an<2•n!

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}滿足an+1=|an-1|(n∈N*
(1)若a1=
54
,求an
(2)若a1=a∈(k,k+1),(k∈N*),求{an}的前3k項(xiàng)的和S3k(用k,a表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•北京模擬)已知數(shù)列{an}滿足an+1=an+2,且a1=1,那么它的通項(xiàng)公式an等于
2n-1
2n-1

查看答案和解析>>

同步練習(xí)冊(cè)答案