已知奇函數(shù)y=f(x)在定義域(-1,1)上是減函數(shù),滿足f(1-a)+f(1-2a)<0,求a的取值范圍
(0,
2
3
(0,
2
3
分析:根據(jù)函數(shù)為奇函數(shù)將原不等式化為f(1-a)<f(2a-1),結(jié)合單調(diào)性得1-a>2a-1.由函數(shù)的定義域可得-1<1-a<1且-1<1-2a<1,解不等式并取交集即可得到a的取值范圍.
解答:解:∵f(1-a)+f(1-2a)<0,
∴移項(xiàng)得f(1-a)<-f(1-2a),
又∵y=f(x)是奇函數(shù),
∴不等式化為f(1-a)<f(2a-1),
∵y=f(x)在定義域(-1,1)上是減函數(shù),
∴1-a>2a-1,解得a<
2
3

又∵-1<1-a<1,且-1<1-2a<1,解得0<a<1.
∴取交集,得0<a<
2
3

綜上所述,可得a的取值范圍為(0,
2
3
).
故答案為:(0,
2
3
點(diǎn)評(píng):本題給出函數(shù)的單調(diào)性與奇偶性,解關(guān)于x的不等式.著重考查了函數(shù)的奇偶性和單調(diào)性及其相互關(guān)系等知識(shí),屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知奇函數(shù)y=f(x)在區(qū)間(-∞,+∞)上是單調(diào)減函數(shù).α,β,γ∈R,且α+β>0,β+γ>0,γ+α>0,則f(α)+f(β)+f(γ)的值( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知奇函數(shù)y=f(x)定義域是[-4,4],當(dāng)-4≤x≤0時(shí),y=f(x)=-x2-2x.
(1)求函數(shù)f(x)的解析式;
(2)求函數(shù)f(x)的值域;
(3)求函數(shù)f(x)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知奇函數(shù)y=f(x)在區(qū)間(-∞,0]上的解析式為f(x)=x2+x,則切點(diǎn)橫坐標(biāo)為1的切線方程為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知奇函數(shù)y=f(x)在定義域(-1,1)上是減函數(shù),當(dāng)0<x<1時(shí)f(x)=-x3-x2
①求函數(shù)f(x)的解析式;
②若有f(1-a)+f(1-2a)<0,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案